摘要
本研究基于水相一锅两步法对纤维素纳米纤丝(CNFs)进行疏水改性,重点研究了没食子酸(GA)、没食子酸甲酯(MG)、没食子酸乙酯(EG)、没食子酸丙酯(PG)及原儿茶酸(PCA)5种植物多酚对CNFs疏水改性的影响,并对疏水改性CNFs在纸张涂布中的应用进行了探究。结果表明,植物多酚(GA、MG、EG、PG及PCA)均能协同十八胺(ODA)对CNFs进行疏水改性;且CNFs的疏水改性作用效果随植物多酚结构中碳链的延长而增强。疏水改性CNFs能够赋予纸张较好疏水性,PCA改性CNFs涂布纸的疏水性强于GA改性CNFs涂布纸的疏水性;PG改性CNFs涂布纸的水接触角较ODA涂布纸的水接触角提高了43%,且疏水改性CNFs涂布纸在干、湿状态下均能保持较好的抗张强度。
纤维素是自然界分布最广泛、储量最丰富的天然有机高分子化合物,兼具可再生、可生物降解等独特性能,可作为制备低成本、高性能生物基功能材料的潜在原料。纳米纤维素作为一种新型纳米材料,主要通过纤维素的机械研
然而,纤维素纳米纤丝(CNFs)表面存在大量羟基,具有较强的亲水性,这在一定程度上限制了其在纸基包装领域的应用。为提升CNFs在纸基包装材料中的应用潜力,常通过化学改
寻找新兴且具有研发潜力的CNFs疏水改性方法,已成为当前的研究热点。受贻贝黏附特性启发,研究者利用多巴胺聚合法将贻贝黏附时分泌的多巴胺应用于有机和无机材料表面疏水改
含有儿茶酚或没食子酚结构的植物多酚类化合物,其结构与多巴胺相似且价格较低,是多巴胺聚合法中多巴胺的理想替代
含有儿茶酚或没食子酚结构的植物多酚均可协同脂肪胺对CNFs进行疏水改性,但由于植物多酚连接的碳链长度、官能团结构等存在差异,疏水改性效果会有所不同。本研究选取5种不同结构的植物多酚对CNFs进行改性,包括没食子酸、没食子酸甲酯、没食子酸乙酯、没食子酸丙酯和原儿茶酸。对比不同植物多酚对CNFs疏水改性的作用效果,并探讨不同植物多酚疏水改性CNFs对涂布纸疏水性能的影响,以期为纸基包装材料的疏水涂层构建及其功能化应用提供技术支持和理论依据。
CNFs(直径20~50 nm,长度1~10 μm)由杭州市化工研究院有限公司提供;原纸(定量40 g/
本研究选择的植物多酚类化合物结构式如

图1 植物多酚结构式
Fig. 1 Chemical structure of plant polyphenols
以质量分数0.1%的NaOH溶液调节100 g 质量分数1.5%的CNFs水相分散液pH值至8~9,向CNFs分散液中添加0.4 g Tris作为缓冲剂,而后分别加入0.4 g不同种类的植物多酚(GA、MG、EG、PG、PCA),在400 r/min转速下室温机械搅拌8 h。配制100 g质量分数2%的ODA/乙醇溶液,与上述溶液混合,在45 ℃水浴条件下继续机械搅拌8 h。所得产物依次经过乙醇和去离子水离心洗涤,最终得到植物多酚疏水改性CNFs。根据植物多酚种类,将疏水改性CNFs分别标记为ODA-PGA@CNFs、ODA-PMG@CNFs、ODA-PEG@CNFs、ODA-PPG@CNFs、ODA-PPCA@CNFs;未改性CNFs为对照组。
将长度20 cm×宽度10 cm的原纸固定于ZAA 2300涂布机上,以固含量3%的不同植物多酚疏水改性CNFs/乙醇分散液为涂布液,在95 mm/s速度下进行涂布。通过更换涂布辊、控制植物多酚疏水改性CNFs添加量以及涂布次数,得到涂布量0.5~2.0 g/
通过扫描电子显微镜(SEM,GeminiSEM500,德国ZEISS)对干燥后的植物多酚疏水改性CNFs进行表面形貌观察分析;通过傅里叶变换红外光谱仪(FT-IR,Nicolet iS50,美国Thermo)对样品结构特征进行分析,波数范围为400~4 000 c
(1) |
式中,表示样品在2θ=22.8°时的衍射强度;表示样品在2θ=18.5°时的衍射强度。
水相一锅两步法制备植物多酚疏水改性CNFs的反应原理如

图2 植物多酚疏水改性CNFs的反应原理
Fig. 2 Schematic diagram of CNFs hydrophobic modification process through plant polyphenols
通过SEM对疏水改性CNFs的表面形貌进行观察,

图3 植物多酚疏水改性前后CNFs的SEM图
Fig. 3 SEM images of CNFs before and after plant polyphenols modifying
FT-IR能够用于分析疏水改性前后CNFs结构及官能团连接键的变化。不同植物多酚疏水改性CNFs的FT-IR谱图如

图4 (a) 植物多酚疏水改性CNFs和(b) 疏水改性过程中CNFs的FT-IR谱图
Fig. 4 FT-IR spectra of (a) plant polyphenols hydrophobic modified CNFs and (b) CNFs during hydrophobic modification
为更直观研究CNFs疏水改性过程中分子结构的变化,以ODA-PPG@CNFs为例,对比分析CNFs、疏水改性中间产物PPG@CNFs以及ODA-PPG@CNFs的FT-IR谱图,如
XPS能够精确表征疏水改性前后CNFs的表面化学组成。以ODA-PPG@CNFs和ODA-PEG@CNFs为代表进行XPS分析,如

图5 植物多酚疏水改性CNFs的XPS谱图
Fig. 5 XPS spectra of plant polyphenols hydrophobic modified CNFs
植物多酚疏水改性CNFs的XRD谱图见

图6 植物多酚疏水改性CNFs的XRD谱图
Fig. 6 XRD spectra of plant polyphenols hydrophobic modified CNFs
在原纸表面涂布植物多酚疏水改性CNFs后,涂布纸表面的微观形貌见

图7 植物多酚疏水改性前后CNFs涂布纸的SEM图
Fig. 7 SEM images of before and after plant polyphenols hydrophobic modifying CNFs coated paper
水接触角能够直观反映纸张表面的疏水性,不同植物多酚对CNFs的疏水改性效果可以通过涂布纸的水接触角体现。当涂布量为1.2 g/

图8 不同涂布纸的水接触角
Fig. 8 Water contact angles of different coated paper
在相同涂布量下,ODA-PPG@CNFs涂布纸的水接触角大于ODA-PMG@CNFs涂布纸和ODA-PEG@CNFs涂布纸的水接触角,这可能是因为碳链长度的增加有利于植物多酚在CNFs表面包
为进一步阐明植物多酚改性CNFs涂布对纸张疏水性的影响,以ODA-PPG@CNFs为例,对比ODA涂布纸及ODA-PPG@CNFs涂布纸的水接触角,结果如
干、湿抗张指数能够表示纸张的机械强度,可用于反映不同纸样在与水接触一定时间后的机械性能变化。

图9 植物多酚疏水改性前后CNFs涂布纸的抗张指数
Fig. 9 Tensile index of CNFs coated paper before and after plant polyphenols hydrophobic modifying
本研究以没食子酸(GA)、没食子酸甲酯(MG)、没食子酸乙酯(EG)、没食子酸丙酯(PG)及原儿茶酸(PCA)5种植物多酚,协同十八胺(ODA),基于水相一锅两步法对纤维素纳米纤丝(CNFs)进行疏水改性,制备具有不同疏水性能的改性CNFs。
3.1 植物多酚结构差异对疏水改性反应及改性CNFs涂布纸的疏水性具有不同影响。对比MG、EG、PG改性CNFs及其涂布纸发现,PG改性CNFs的O/C最低,结晶度下降最明显,其涂布纸的水接触角最大,说明植物多酚碳链长度增加有利于疏水改性;此外,PCA改性CNFs的结晶度低于GA改性CNFs的结晶度,其涂布纸的水接触角大于GA改性CNFs涂布纸的水接触角,证明儿茶酚结构相较于没食子酚结构,更有利于提高纸张疏水性。
3.2 植物多酚疏水改性CNFs能够通过表面涂布赋予纸张较强的疏水性,涂布后纸张表面呈现出细微的粗糙结构。此外,疏水改性CNFs涂布改善了涂布纸在湿态下的力学性能,使纸张在干、湿状态下均能保持较好的抗张强度。
参 考 文 献
HASSAN M L, MATHEW A P, HASSAN E A, et al. Nanofibers from bagasse and rice straw: Process optimization and properties[J]. Wood Science and Technology, 2012, 46(1/3): 193-205. [百度学术]
BAATI R, MABROUK A B, MAGNIN A, et al. CNFs from twin screw extrusion and high pressure homogenization: A comparative study[J]. Carbohydrate Polymers, 2018, 195: 321-328. [百度学术]
OSONG S H, NORGREN S, ENGSTRAND P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: A review[J]. Cellulose, 2016, 23(1): 93-123. [百度学术]
HENRIKSSON M, HENRIKSSON G, BERGLUND L A, et al. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers[J]. European Polymer Journal, 2007, 43(8): 3434-3441. [百度学术]
LE P, LEI H, LIAN B, et al. Okara Cellulose Nanofibrils Produced by Pretreatment with Sustainable Deep Eutectic Solvent Coupled with Various Mechanical Treatments[J]. Paper and Biomaterials, 2022, 7(2): 46-55. [百度学术]
TAN T, TANG X, ZHANG H, et al. An Alternative Strategy to Obtain Cellulose Nanofibrils from Parenchyma Cellulose of Bagasse Pith and the Performance of Its Nanopaper[J]. Paper and Biomaterials, 2022, 7(2): 18-26. [百度学术]
THOMAS B, RAJ M C, ATHIRA K B, et al. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications[J]. Chemical Reviews, 2018, 118(24): 11575-11625. [百度学术]
ZHANG Y, DENG W, WU M, et al. Tailoring Functionality of Nanocellulose: Current Status and Critical Challenges[J]. Nanomaterials, DOI: 10.3390/nano13091489. [百度学术]
YUAN H, NISHIYAMA Y, WADA M, et al. Surface Acylation of Cellulose Whiskers by Drying Aqueous Emulsion[J]. Biomacromolecules, 2006, 7(3): 696-700. [百度学术]
LITTUNEN K, HIPPI U, JOHANSSON L, et al. Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers[J]. Carbohydrate Polymers, 2011, 84(3): 1039-1047. [百度学术]
MULYADI A, DENG Y. Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application[J]. Cellulose, 2016, 23(1): 519-528. [百度学术]
ZHOU S, YOU T, ZHANG X, et al. Superhydrophobic Cellulose Nanofiber-assembled Aerogels for Highly Efficient Water-in-oil Emulsions Separation[J]. ACS Applied Nano Materials, 2018, 1(5): 2095-2103. [百度学术]
ZHANG X, LIU M, WANG H, et al. Ultralight, hydrophobic, anisotropic bamboo-derived cellulose nanofibrils aerogels with excellent shape recovery via freeze-casting[J]. Carbohydrate Polymers, 2019, 208: 232-240. [百度学术]
何星桦, 栾云浩, 李宇航, 等. 磁性疏水性纤维素纳米纤丝气凝胶的制备及性能研究[J]. 中国造纸学报, 2021, 36(4): 33-37. [百度学术]
HE X H, LUAN Y H, LI Y H, et al. Preparation and Performance Research of Magnetic Hydrophobic Cellulose Nanofibril Aerogel[J]. Transactions of China Pulp and Paper, 2021, 36(4): 33-37. [百度学术]
韩营营, 章飞洋, 吴锦涵, 等. 疏水亲油型纳米纤维素气凝胶的制备与吸油性能研究[J]. 中国造纸, 2023, 42(2): 11-19. [百度学术]
HAN Y Y, ZHANG F Y, WU J H, et al. Preparation and Oil Absorption Properties of Hydrophobic and Oil-philic Nanocellulose Aerogel[J]. China Pulp & Paper, 2023, 42(2): 11-19. [百度学术]
DIZGE N, SHAULSKY E, KARANIKOLA V. Electrospun cellulose nanofibers for superhydrophobic and oleophobic membranes[J]. Journal of Membrane Science, DOI: 10.1016/j.memsci.2019.117271. [百度学术]
LI Z, ZHONG L, ZHANG T, et al. Sustainable, Flexible, and Superhydrophobic Functionalized Cellulose Aerogel for Selective and Versatile Oil/Water Separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(11): 9984-9994. [百度学术]
LEE D, PARK D, SHIN K, et al. ZnO nanoparticles-laden cellulose nanofibers-armored Pickering emulsions with improved UV protection and water resistance[J]. Journal of Industrial and Engineering Chemistry, 2021, 96: 219-225. [百度学术]
LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired Surface Chemistry for Multifunctional Coatings[J]. Science, 2007, 318(5849): 426-430. [百度学术]
GAO R, XIAO S, GAN W, et al. Mussel Adhesive-inspired Design of Superhydrophobic Nanofibrillated Cellulose Aerogels for Oil/Water Separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9047-9055. [百度学术]
SILEIKA T S, BARRETT D G, ZHANG R, et al. Colorless Multifunctional Coatings Inspired by Polyphenols Found in Tea, Chocolate, and Wine[J]. Angewandte Chemie, 2013, 125(41): 10966-10970. [百度学术]
LI T, XIAO Y, GUO D, et al. In-situ coating TiO2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance[J]. Journal of Colloid and Interface Science, 2020, 572: 114-121. [百度学术]
BARRETT D G, SILEIKA T S, MESSERSMITH P B. Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings[J]. Chem Commun (Camb), 2014, 50(55): 7265-7268. [百度学术]
HU Z, BERRY R M, PELTON R, et al. One-pot Water-based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5018-5026. [百度学术]
XIANG H, WANG B, ZHONG M, et al. Sustainable and Versatile Superhydrophobic Cellulose Nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5939-5948. [百度学术]
SEGAL L, CREELY J J, MARTIN A E, et al. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794. [百度学术]
ROY S, ZHAI L, HAI L V, et al. One-step nanocellulose coating converts tissue paper into an efficient separation membrane[J]. Cellulose, 2018, 25(9): 4871-4886. [百度学术]
LIZUNDIA E, NGUYEN T, VILAS J L, et al. Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films[J]. Journal of Materials Chemistry A, 2017, 5(36): 19184-19194. [百度学术]
HUANG N, ZHANG S, YANG L, et al. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application[J]. ACS Applied Materials & Interfaces, 2015, 7(32): 17935-17946. CPP [百度学术]