摘要
本文综述了生物质基泡沫材料的研究进展,详述了生物质基泡沫材料的主要原料及种类(纤维素、木质素、淀粉和壳聚糖)、制备方法和性能(热学、力学和环境稳定性)的改善方法,以及其在建筑绝缘材料、包装材料和其他潜在领域的应用现状,并对其未来研发方向进行了展望。
作为一种重要的绿色新兴材料——生物质材料正逐步成为材料领域的焦点。与传统石油基材料相比,生物质材料具有显著的环保优势,如可减少温室气体排放和降低对非可再生资源的依赖。其中,生物质基泡沫材料因其优异性能(如质轻、隔热保温、缓冲减震、隔音等)和可生物降解性而“崭露头角”,相关研究已取得一定进展。Huang
本文从泡沫材料的原料及种类、制备方法和应用等方面综述生物质基泡沫材料的研究及应用进展,以期为生物质基泡沫材料的实验室研究和规模应用提供一定参考。
根据来源不同,可将生物质基泡沫材料的原料分为农林废弃物、林业副产品、微生物产物等;根据化学组成,可将生物质基泡沫材料的原料分为多糖类、壳聚糖、木质素、脂质和植物油
综上可知,生物质基泡沫原料的化学组成、物理/化学性能等均会影响所得泡沫材料的结构(如孔隙率)及性能(如热学、力学等)。因此,在制备生物质基泡沫材料时,需要根据应用领域(如包装、食品、生物医疗、建筑等)选择合适的原料。
目前,研究较多的生物质基泡沫材料主要有纤维素基泡沫材料、木质素基泡沫材料、淀粉基泡沫材料、壳聚糖基泡沫材料(见

图1 生物质基泡沫材料的主要种类
Fig. 1 Main types of biomass-based foam materials

图2 单宁基泡沫材
Fig. 2 Tannin-based foam materia
最早的纤维素基泡沫材料是通过物理发泡方式制备得
木质素中特有的苯环结构使得木质素基泡沫材料具有较好的热稳定性,有望替代石油基多元醇来制备泡沫材料。但木质素结构复杂、反应活性较低,在与其他材料复合时,相容性较差,因此,研究人员制备木质素基泡沫材料常采用2种思路:①将木质素作为泡沫材料中的掺杂物。如木质素和纤维素复合制备的泡沫材料具有较好的力学性能和良好的阻燃性
淀粉主要分为天然淀粉、改性淀粉和复合淀粉,天然淀粉有直链淀粉和支链淀粉2种结构,结构差异导致制得的生物质基泡沫具有不同的开闭孔结构和性
壳聚糖为天然碱性多糖,分子结构中含有大量氨基、反应活性
生物质基泡沫材料的制备方法包括模压发泡法、烘焙发泡法、挤出发泡法、冷冻干燥/溶剂交换法、超临界流体挤出发泡法、微波发泡法和3D打印技术等。
模压发泡
冷冻干燥/溶剂交换发泡
超临界流体挤出发泡法是在挤出过程中,向熔体中注入超临界CO2或N2,以形成微孔结构。超临界流体气体的表面张力小,兼具液体的密度和流动性以及气体的黏度和扩散系数,因此其易在淀粉熔体中迅速溶解;此法可提高泡沫材料的发泡倍率,但较难调控泡沫材料的泡
微波发泡法的原理是,共混物料中的极性分子在微波电磁场作用下运动,将电磁能转化为热能,随后发泡剂受热产生气体,从而使材料发
此外,有研究人员发现,可利用3D打印技术制备组织工程支架材料及泡沫混凝
目前,一些生物质基泡沫材料的热学性能和力学性能已可以媲美于聚苯乙烯泡沫材料,但在实际应用中仍存在明显的不足和局限性,尤其是在温控应用场景中,如食品包装、药品包装及建筑材
通过提高泡沫材料的交联密度和引入纳米增强相,可显著提高泡沫材料的力学性能。周宇

图3 秸秆生物质PUR
Fig. 3 PURF from straw biomas
表面改性技术可用于调控泡沫材料的亲水性或疏水性,以使泡沫材料适应特定的应用场景。Zhang
通过上述性能改善方法,生物质基泡沫材料的热学性能、力学性能和环境稳定性均有望得到提升;且随着研究的深入,这些方法可推动生物质基泡沫材料在更多领域中的应用。
生物质基泡沫材料因其卓越的热绝缘性和环境友好性而在建筑绝缘材料领域备受关注。Oluwabunmi等
建筑材料除了对强度和保温性能(绝缘隔热)的要求越来越高,随着“双碳”目标的逐步落实和人们对更高品质生活的追求,该领域对材料的环境友好性和可生物降解也提出了挑战。如降低泡沫材料的甲醛释放
生物质基泡沫材料轻质、耐冲击,因此可用于包装材料领域,如保护性外包装、运输容器和垫料等。杨健根等
随着消费者和制造企业对环保、低碳理念的日益关注和重视,未来,生物质基包装材料的市场需求预计将持续增长。生物质基泡沫材料在包装领域的应用将推动包装行业向更加环保和可持续的方向发展。
除了建筑绝缘材料和包装材料领域,生物质基泡沫材料在其他领域也展现出潜在的应用前景。如在汽车工业中,泡沫材料可作为轻质、吸音的内饰材料,以提高车辆的能效和乘坐舒适性。唐波
如上文所述,壳聚糖基泡沫材料还有望应用于吸附领域,李洋
综上,随着研究的深入和技术的发展,生物质基泡沫材料在上述领域的应用将不断深化和市场化,其将在多个领域发挥更加重要的作用,并最终成为可持续发展背景下的理想绿色材料。
生物质基泡沫材料的研究和应用在推动可持续发展和绿色材料研发方面具有广阔前景。以淀粉、纤维素、木质素和壳聚糖等生物质原材料为原料,结合适宜的制备方法和性能优化方法,制备具有良好力学性能、热学性能的生物质基泡沫材料。目前,生物质基泡沫材料在建筑绝缘、包装材料及其他应用领域已展现出较大应用价值,研发此类材料不仅可减少温室气体排放并降低对非可再生资源的依赖。然而,实际研究和应用过程中仍面临诸多挑战。如淀粉基泡沫材料在生产过程中面临糊化和力学性能较差的问题;木质素利用率较低是制约木质素基泡沫材料大力发展的关键因素;壳聚糖基泡沫材料的力学性能和长期环境稳定性也是迫切需要改善的问题。面对这些挑战,未来的研究应集中于生物质原料和泡沫材料性能的改善、制备方法的改进及生产成本的降低等方面。此外,还应利用生命周期评价法对生物质基泡沫材料的生产过程进行环境评估,“有的放矢”地进行泡沫材料的研发工作;探索和拓展生物质基泡沫材料的应用领域,并实现其在多个领域的商业化应用,为环境保护、资源可持续利用和循环经济发展做出更大贡献。
参考文献
HUANG Y, YANG J, CHEN L, et al. Chitin Nanofibrils to Stabilize Long-Life Pickering Foams and Their Application for Lightweight Porous Materials[J]. ACS Sustainable Chemistry & Engineering, DOI: 10.1021/acssuschemeng.8b01883. [百度学术]
THOMAS S K, PARAMESWARANPILLAI J, KRISHNASAMY S, et al. A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites[J]. Carbohydrate Polymer Technologies and Applications, DOI: 10.1016/j.carpta.2021.100095. [百度学术]
张 伟, 储富祥, 王春鹏. 生物质基泡沫材料的最新研究进展[C]//2009年中国绝热节能材料协会年会论文集.杭州:中国绝热节能材料协会,2009: 38-46. [百度学术]
ZHANG W, CHU F X, WANG C P. The Latest Research Progress of Biomass-based Foams[C]// Collection of China Insulation & Energy Efficiency Materials Association Annual Conference, Hangzhou: China Insulation & Energy Efficiency Materials Association, 2009: 38-46. [百度学术]
MIMINI V, KABRELIAN V, FACKLER K, et al. Lignin-based foams as insulation materials: A review[J]. Holzforschung, DOI: 10.1515/hf-2018-0111. [百度学术]
LAVOINE N, BERGSTRÖM L. Nanocellulose-based foams and aerogels: Processing, properties, and applications[J]. Journal of Materials Chemistry A, DOI: 10.1039/c7ta02807e. [百度学术]
袁文彬, 曹 明, 杜官本, 等. 生物质发泡材料研究进展[J]. 功能材料, 2023(3): 3060-3070. [百度学术]
YUAN W B, CAO M, DU G B, et al. Research progress of biomass foam materials[J]. Journal of Functional Materials, 2023(3): 3060-3070. [百度学术]
邓 莉, 张军华. 聚乙烯醇缩甲醛-壳聚糖泡沫的制备及在废水处理中的应用[J]. 高分子材料科学与工程, 2019, 35(8): 126-130. [百度学术]
DENG L, ZHANG J H. Preparation of polyvinyl formaldehyde-chitosan foam and its application in wastewater treatment[J]. Polymer Materials Science and Engineering, 2019, 35(8): 126-130. [百度学术]
吴天昊. 碳纳米管/壳聚糖复合泡沫及其力学性能研究[D]. 大连: 大连理工大学, 2016. [百度学术]
WU T H. Study on mechanical properties of carbon nanotube/chitosan composite foam[D]. Dalian: Dalian University of Technology, 2016. [百度学术]
高志明. 一种木质素基泡沫混凝土发泡剂: CN201710384243.3[P]. 2024-03-02. [百度学术]
GAO Z M. The utility model relates to a lignin-based foam concrete blowing agent: CN201710384243.3[P]. 2024-03-02. [百度学术]
SOHN J, KIM H, KIM S, et al. Biodegradable Foam Cushions as Ecofriendly Packaging Materials[J]. Sustainability, DOI: 10.3390/su11061731. [百度学术]
郭梦雅. 纳米ZnO/AESO Pickering乳液及其功能泡沫材料的制备和性能研究[D]. 南宁: 广西大学, 2019. [百度学术]
GUO M Y. Preparation and properties of Nano-ZnO/AESO Pickering emulsion and its functional foams[D]. Nanning: Guangxi University, 2019. [百度学术]
SABA N, JAWAID M, ALOTHMAN O Y, et al. Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications[J]. Journal of Reinforced Plastics and Composites, 2016, 35(6): 447-470. [百度学术]
陈玉芬, 钱 怡, 孙 昊. 一种新型植物纤维发泡缓冲材料制备研究[J]. 化工新型材料, 2016, 44(5): 243-245. [百度学术]
CHEN Y F, QIAN Y, SUN H. Preparation of a novel plant fiber foaming buffer material[J]. New Chemical Materials, 2016, 44(5): 243-245. [百度学术]
NECHITA P, NĂSTAC S M. Overview on Foam Forming Cellulose Materials for Cushioning Packaging Applications[J]. Polymers, DOI: 10.3390/polym14101963. [百度学术]
JAHANGIRI P, KOREHEI R, ZEINODDINI S S, et al. On filtration and heat insulation properties of foam formed cellulose based materials[J]. Nordic Pulp & Paper Research Journal, 2014, 29(4): 584-591. [百度学术]
刘 强. 纳米纤维素基泡沫材料孔结构调控技术的研究[D]. 西安: 陕西科技大学, 2017. [百度学术]
LIU Q. Research on pore structure regulation technology of nanocellulose-based foams[D]. Xi’an: Shaanxi University of Science and Technology, 2017. [百度学术]
HE S, LIU C, CHI X, et al. Bio-inspired lightweight pulp foams with improved mechanical property and flame retardancy via borate cross-linking[J]. Chemical Engineering Journal, 2019, 371: 34-42. [百度学术]
SANTOS O S H, DA S M C , SILVA V R, et al. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water[J]. Journal of Hazardous Materials, 2017, 324: 406-413. [百度学术]
LAURICHESSE S, HUILLET C, AVEROUS L. Original polyols based on organosolv lignin and fatty acids: New bio-based building blocks for segmented polyurethane synthesis [J]. Green Chemistry, 2014, 16(8): 3958-3970. [百度学术]
CATETO C A, BARREIRO M F, RODRIGUES A E, et al. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2583-2589. [百度学术]
MAHMOOD N, YUAN Z, SCHMIDT J, et al. Hydrolytic liquefaction of hydrolysis lignin for the preparation of biobased rigid polyurethane foam [J]. Green Chemistry, 2016, 18(8): 2385-2398. [百度学术]
SHEY J, IMAM S H, GLENN G M, et al. Properties of baked starch foam with natural rubber latex[J]. Industrial Crops and Products, 2006, 24(1): 34-40. [百度学术]
江健波. 木薯淀粉基泡沫材料的制备及其性能研究[D]. 南宁: 广西师范学院, 2014. [百度学术]
JIANG J B. Preparation and properties of tapioca starch-based foam materials[D]. Nanning: Guangxi Normal University, 2014. [百度学术]
马 涛,于大海. 乙酰化淀粉/PBS制备生物降解塑料的研究[J]. 食品工业, 2010, 31(2): 4-6. [百度学术]
MA T, YU D H. Study on the preparation of biodegradable plastics from acetylated starch/PBS[J]. Food Industry, 2010, 31(2): 4-6. [百度学术]
赵 凯, 雷 鸣, 刘丽艳, 等. 乙酰化羟丙基复合改性玉米淀粉物化特性研究[J].中国粮油学报, 2019, 34(10): 29-35. [百度学术]
ZHAO K, LEI M, LIU L Y, et al. Study on physicochemical properties of acetylated hydroxypropyl compound modified corn starch[J]. Chinese Journal of Cereals and Oils, 2019, 34(10): 29-35. [百度学术]
PARK J S, YANG J H, KIM D H, et al. Degradability of expanded starch/PVA blends prepared using calcium carbonate as the expanding inhibitor[J]. Journal of Applied Polymer Science, 2004, 93(2): 911-919. [百度学术]
MACHADO C M, BENELLI P, TESSARO I C. Effect of acetylated starch on the development of peanut skin-cassava starch foams[J]. International Journal of Biological Mac-omolecules, 2020, 165: 1706-1716. [百度学术]
李洋洋. 一种负载壳聚糖的泡沫活性炭材料及其制备方法: CN201610846394.1[P]. 2024-03-02. [百度学术]
LI Y Y. Foam activated carbon material loaded with chitosan and its preparation method: CN201610846394.1[P]. 2024-03-02. [百度学术]
冯 芳, 王东田, 谭 锦, 等. 一种巯基化壳聚糖改性聚氨酯泡沫塑料的制备方法: CN201410275724.7[P]. 2024-03-02. [百度学术]
FENG F, WANG D T, TAN J, et al. The invention relates to a preparation method for polyurethane foam modified by sulfhydrated chitosan: CN201410275724.7[P]. 2024-03-02. [百度学术]
贾卓翰, 王 建, 王太兵, 等. 纤维素/壳聚糖泡沫敷料制备及性能[J]. 工程塑料应用, 2021, 49(5): 8-13, 33. [百度学术]
JIA Z H, WANG J, WANG T B, et al. Preparation and properties of cellulose/chitosan foam dressing[J]. Engineering Plastics Application, 2021, 49(5): 8-13, 33. [百度学术]
陈小健, 台立民. 淀粉基复合泡沫塑料制备工艺研究进展[J]. 中国塑料, 2010, 24(9): 1-5. [百度学术]
CHEN X J, TAI L M. Research progress in preparation process of starch-based foamed plastics[J]. China Plastics, 2010, 24(9): 1-5. [百度学术]
BERGEL B F, OSORIO S D, DA LUZ L M , et al. Effects of hydrophobized starches on thermoplastic starch foams made from potato starch[J]. Carbohydrate Polymers, 2018, 200: 106-114. [百度学术]
张 礼. 淀粉基生物质发泡复合材料的制备及性能研究[D]. 株洲: 湖南工业大学, 2016. [百度学术]
ZHANG L. The study on the preparation and properties of starch-based biomass foaming composites[D]. Zhuzhou: Hunan University of Technology, 2016. [百度学术]
KAHVAND F, FASIHI M. Microstructure and physical properties of thermoplastic corn starch foams as influenced by polyvinyl alcohol and plasticizer contents[J]. International Journal of Biological Macromolecules, 2020, 157: 359-367. [百度学术]
CHOTIPRAYON P, CHAISAWAD B, YOKSAN R. Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres[J]. International Journal of Biological Macromolecules, 2020, 156: 960-968. [百度学术]
SOYKEABKAEW N, THANOMSILP C, SUWANTONG O. A review: Starch-based composite foams[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 246-263. [百度学术]
张星云. 海带发泡缓冲材料研究[D]. 杭州: 浙江理工大学, 2015. [百度学术]
ZHANG X Y. Research of laminaria japonica foamed cushioning materials[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. [百度学术]
SVAGAN A J, SAMIR M A S A, BERGLUND L A. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils[J]. Advanced Materials, 2008, 20(7): 1263-1269. [百度学术]
ZUBAIR M, FERRARI R, ALAGHA O, et al. Microwave foaming of materials: An emerging field[J]. Polymers, DOI: 10.3390/polym12112477. [百度学术]
OKOLIEOCHA C, RAPS D, SUBRAMANIAM K, et al. Microcellular to nanocellular polymer foams: Progress (2004—2015) and future directions—A review[J]. European Polymer Journal, 2015, 73: 500-519. [百度学术]
OLUWABUNMI K, D’SOUZA N A, ZHAO W, et al. Compostable, fully biobased foams using PLA and micro cellulose for zero energy buildings[J]. Scientific Reports, DOI: 10.1038/s41598-020-74478-y. [百度学术]
MAO H I, CHEN C W, YAN H C, et al. Synthesis and characteristics of nonisocyanate polyurethane composed of bio-based dimer diamine for supercritical CO2 foaming applications[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.52841. [百度学术]
ZAUZI N S A, ARIFF Z M, KHIMI S R. Foamability of natural rubber via microwave assisted foaming with azodicarbonamide (ADC) as blowing agent[J]. Materials Today: Proceedings, 2019, 17: 1001-1007. [百度学术]
XU H X, XU P P, WANG D, et al. A dimensional stable hydrogelborn foam with enhanced mechanical and thermal insulation and fire-retarding properties via fast microwave foaming[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.125781. [百度学术]
唐 杉, 李仲明, 冯 东, 等. 一种3D打印结合超临界发泡设计制备聚乳酸基骨修复组织工程多孔支架的方法: CN202211059745.6[P]. 2023-11-23. [百度学术]
TANG S, LI Z M, FENG D, et al. 3D printing and supercritical foaming design method for preparing polylactic acid based bone repair tissue engineering porous scaffolds: CN202211059745.6[P]. 2023-11-23. [百度学术]
杨 进, 刘永鹏, 贺行洋, 等. 一种碳化3D打印泡沫混凝土的制备方法: CN202310205808.2[P]. 2024-03-02. [百度学术]
YANG J, LIU Y P, HENG X Y, et al. The invention relates to a preparation method of carbonized 3D printed foam concrete: CN202310205808.2[P]. 2024-03-02. [百度学术]
MORT R, VORST K, CURTZWILER G, et al. Biobased foams for thermal insulation: Saterial selection, processing, modelling, and performance[J]. RSC Advances, DOI: 10.1039/d0ra09287h. [百度学术]
郑进宝, 李 琛. 淀粉基发泡材料制备及性能优化研究进展[J]. 精细化工, 2022, 39(8): 1513-1525. [百度学术]
ZHENG J B, LI C. Research progress on preparation and performance optimization of starch-based foams[J]. Fine Chemicals, 2022, 39(8): 1513-1525. [百度学术]
周 宇, 韩 望, 赵丽青, 等. 生物质聚氨酯硬质泡沫材料的发泡工艺及结构表征[J]. 北京林业大学学报, 2016, 38(10): 123-129. [百度学术]
ZHOU Y, HAN W, ZHAO L Q, et al. Foaming process and structural characterization of bio-polyurethane rigid foams[J]. Journal of Beijing Forestry University, 2016, 38(10): 123-129. [百度学术]
GONZÁLEZ-UGARTE A S, HAFEZ I, TAJVIDI M. Characterization and properties of hybrid foams from nanocellulose and kaolin-microfibrillated cellulose composite[J]. Scientific Reports, DOI: 10.1038/s41598-020-73899-z. [百度学术]
袁东方, 张玉苍. 物理发泡水稻秸秆基聚氨酯泡沫研究[J]. 生物质化学工程, 2020, 54(2): 33-39. [百度学术]
YUAN D F, ZHANG Y C. Study on physical foaming of rice straw based polyurethane foam[J]. Biomass Chemical Engineering, 2020, 54(2): 33-39. [百度学术]
ZHANG Y, LI C, FU X, et al. Characterization of a novel starch-based foam with a tunable release of oxygen[J]. Food Chemistry, DOI: 10.1016/j.foodchem.2022.133062. [百度学术]
FERRERES G, PÉREZ-RAFAEL S, MORENA A G, et al. Influence of Enzymatically Hydrophobized Hemp Protein on Morphology and Mechanical Properties of Bio-based Polyurethane and Epoxy Foams[J]. Polymers, DOI: 10.3390/polym15173608. [百度学术]
刘博文, 李学辉, 周云霞, 等. 单宁-糠醇-乙二醛共缩聚树脂泡沫的制备[J]. 林业工程学报, 2022, 7(4): 107-114. [百度学术]
LIU B W, LI X H, ZHOU Y X, et al. Preparation of tannin-furfuryl alcohol-glyoxal copoly condensation resin foam[J]. Journal of Forestry Engineering, 2022, 7(4): 107-114. [百度学术]
孙丰文, 鹿甫坤, 储呈浩, 等. 一种生物质泡沫夹芯复合隔墙材料的制备方法: CN105462163A[P]. 2023-12-06. [百度学术]
SUN F W, LU F K, CHU C H, et al. Preparation method of a biomass foam sandwich composite partition wall material: CN105462163A[P]. 2023-12-06. [百度学术]
杨健根, 单志华, 陈 慧, 等. 环境友好生物质泡沫包装材料现状[J]. 皮革科学与工程, 2018,28(3): 38-41. [百度学术]
YANG J G, SHAN Z H, CHEN H, et al. Status of environmentally friendly biomass foam packaging materials[J]. Leather Science and Engineering, 2018,28(3): 38-41. [百度学术]
赵 红, 麒 麟, 李洪来. 不同填充物对机械法制纤维素缓冲包装材料性能的影响[J]. 包装工程, 2009, 29(10): 68-70. [百度学术]
ZHAO H, QI L, LI H L. Effect of different fillings on properties of cellulose buffer packing materials by mechanical process[J]. Packaging Engineering, 2009, 29(10): 68-70. [百度学术]
薛栋杰, 李泽龙, 黄崇杏. 纳米纤维素在植物纤维缓冲包装材料中的应用研究[J]. 轻工科技, 2014(5): 33-35. [百度学术]
XUE D J, LI Z L, HUANG C X. Research on the application of nanocellulose in plant fiber buffer packaging materials[J]. Light Industry and Technology, 2014(5): 33-35. [百度学术]
何朵朵, 李真真, 李丹丹, 等. 生物质基缓冲包装材料制备工艺的研究[J]. 山东轻工业学院学报(自然科学版), 2018, 32(4): 43-48. [百度学术]
HE D D, LI Z Z, LI D D, et al. Study on the preparation technology of biomass-based buffer packaging materials[J]. Journal of Shandong Polytechnic University (Natural Science Editon), 2018, 32(4): 43-48. [百度学术]
唐 波, 苏 忠, 幸向玲, 等. 聚氨酯泡沫材料的吸声性能研究进展[C]// 2019中国汽车工程学会年会论文集(5).上海:中国汽车工程学会,2019:330-334. [百度学术]
TANG B, SU Z, XING X L, et al. Research progress on sound absorption properties of polyurethane foams[C]// Proceedings of the 2019 SAECCE (5). Shanghai: China Society of Automotive Engineers, 2019: 330-334. [百度学术]
CPP [百度学术]