摘要
木质素作为一种可广泛获得的生物质资源,在高附加值化学品、纳米材料和生物质基材料中具有巨大的应用潜力。作为地球上含量丰富的天然高分子,木质素虽然在传统的制浆造纸业中属于副产物,但其在环保、可持续性及生物可降解产品的开发中显示出巨大的潜力。本文主要对木质素的化学结构、表征与分离方法,及其在不同工业领域的应用(如分散剂、黏合剂、涂料和复合材料)尤其是球形木质素的应用等方面进行综述,并对未来木质素相关研究方向进行了展望。
木质素作为一种复杂的酚类大分子,主要存在于木本植物、草本植物及所有的维管植物中,起到强化植物组织的作用,约占植物纤维原料的1/3,是世界上储量丰富的天然高分
木质素增值策略一方面是采用经典方法如热解或气
本文从木质素的化学结构、表征与分离等方面入手,通过对木质素产品的应用情况进行分析,尤其是球形木质素的研究现状,展示了木质素增值过程中方法的可行性,并对其发展进行了总结和展望。
木质素是一种由交联的苯丙烷结构单元构成的三维无定形大分子,包含分别来自松香醇、芥子醇和对香豆醇的愈创木基丙烷(G)、紫丁香基丙烷(S)和对羟基苯基丙烷(H)木质素单元,其分子结构如

图1 木质素的3种基本结构单
Fig. 1 Three basic structural units of ligni
木质素的结构和化学性质根据其植物来源和分离方法而
作为木质纤维素材料中的关键组成部分,木质素的量化和表征至关重要。通常可采用硫代乙酸、乙酰溴和Klason方法来估算木质素含量。硫代乙酸法通过将木质素中的苄基醇基团转变为硫醚,存在由于对醚键的特异性反应导致估算偏低的情况;乙酰溴法通过溴替换乙酰化木质素α-碳上未取代的羟基,存在因多糖氧化降解而导致估算偏高的情况;Klason属于质量分析法,使用质量分数72%的硫酸对生物质中的非木质素成分进行降解,并通过称量不溶性残留物来代表木质素含量,存在受到蛋白质共沉淀或非木质素无机成分影响的情
对于木质素的化学结构,尤其是主要化学官能团(甲氧基、羟基、羰基和羧基等)含量的测定,通常采用化学修饰或间接量化的方法,以确保准确
随着仪器分析技术的发展,研究人员掌握了快速且非破坏性的木质素化学和物理性质的检测手段。傅里叶变换红外光谱仪(FT-IR)可以全面分析木质素的化学结构,借助其红外光谱特征包括脂肪族和酚类羟基的O—H伸缩振动,以及羰基的CO伸缩振
木质素作为一种重要的天然高分子化合物,其传统分离方法主要包括硫酸盐法(Kraft法)和亚硫酸盐法,其中Kraft法是一种普遍应用的工业分离木质素的方法,在高温(约170 ℃)和高压下采用含硫化钠和氢氧化钠的“白液”处理木材,能够有效地从多种木材中分离出具有一致化学结构的木质
除此之外,目前还采取机械粉碎、蒸汽爆破、有机溶剂溶解、超临界二氧化碳萃取等方法少量分离木质素。然而,具有复杂结构的木质素,其高值化的加工利用依然是人们头疼的技术难题。近年来研究者积极争取以绿色手段来制备具有特定形态和大小的木质素颗粒,尤其是球形木质素颗粒。该方法需将木质素溶解在适当的溶剂中,然后通过控制溶剂交换来形成稳定的水性木质素颗粒悬浮液,其不仅能够有效地分离木质素,还能生成具有特定形态和大小的木质素颗粒,有利于其高性能应用(如Pickering乳化
木质素作为一种大分子化合物,在直接应用时无需经过高能耗的解聚过程,但通常需要对其结构进行调整以增强功能性,如增加羟基的反应活性或改变化学反应位点的性质,从而合成更高效且具有增强反应性的大分子单
由于木质素具有异质性和高聚合度,其可作为高分子生物合成的理想来源或前
在生物复合材料中,木质素作为天然纤维如纤维素的增强剂,同时也可作为多种聚合物的相溶

图2 复合膜的实物照片与色
Fig. 2 Photos and chromatic aberration of the composite film
除此以外,由于木质素结构中含有还原官能团,研究者们还利用其还原性能制备了如钯和银等金属纳米粒
此外,木质素还被用于生产活性炭、碳催化剂、碳纤维、碳电极等碳基材料的前体材
将木质素通过各种工艺手段解聚为小分子,旨在获得可应用于能源生产的低附加值碳源和高附加值化合物如香草醛及其他酚类化合
常用的木质素降解手段包括热解、化学催化转化和生物催化转化等。作为一种热化学转化手段,热解技术是将木质素加热至250~900 ℃进行分解,热解过程主要发生在280~500 ℃,涉及β-O-4和C—C的断裂,产生水、气体、固体(焦炭)和液体(生物油
相关研究表明,在自然界中存在的微生物,已进化出类似“生物漏斗”式的芳香族化合物的转化方式(

图3 木质素解聚产物的“漏斗式”生物转
Fig. 3 Biological funneling conversion of lignin depolymerization product
球形木质素颗粒具有独特的物理化学性质,主要包括独特的形态、改良的表面特性及改进的功能性,因而在众多工业应用中占有重要地
与传统的不规则木质素相比,球形木质素颗粒具有高度的均一性和较小的尺寸分
此外,球形木质素颗粒的化学结构可以根据具体应用进行调
作为一种可持续、多功能的材料,球形木质素颗粒近年来已在生物医学、生物催化、纳米复合材料等领域得到广泛的研究。在工业领域,球形木质素颗粒的应用主要集中在分散剂、乳化剂、胶黏剂以及复合材料等方面。
分散剂的作用是降低界面张力,增加悬浮颗粒间的排斥力,从而防止相的沉降和聚集,改善多相系统的技术性能。由于球形木质素颗粒易于分散在水中,且表面带负电
已有研究表明,球形木质素颗粒可作为Pickering乳化剂稳定油包水(O/W)乳

图4 不同浓度球形木质素中油滴尺寸的变
Fig. 4 Changes of oil droplet size in spherical lignin with different concentratio
木质素的另一传统应用领域是胶黏
由木质素颗粒制备的复合材料是木质素又一重要的综合应用领
本文主要综述了木质素在工业领域的多样化应用与生产表征手段。作为一种复杂的多酚生物大分子,木质素在工业领域的应用潜力逐渐显现,特别是作为高附加值产品的原料。从大分子直接利用到通过解聚途径转化为小分子平台化合物,木质素展现了广泛的应用潜力。在化学结构和表征技术方面,先进的分析技术如傅里叶变换红外光谱(FT-IR)、凝胶色谱(GPC)、热重分析(TGA)、示差扫描量热(DSC)和核磁共振(NMR)的应用,有助于更深入地了解木质素的复杂化学结构及其潜在价值,以探索木质素在高附加值应用领域的新途径,如生物医学、环境工程和高分子材料科学,为木质素的进一步应用开辟新的道路。然而,尽管存在巨大的发展空间,木质素的利用仍面临若干的关键挑战。
首先,木质素的化学异质性和复杂的聚合结构使其难以统一标准化处理,这给工业化生产带来难度。其次,现有的提取和转化方法,尽管在效率和环保性方面有所改进,但仍需进一步优化以提高成本效益和可持续性。此外,木质素的市场应用仍需更多创新和技术支持,以实现其在各种工业应用领域中的广泛利用。
面对这些挑战,新的研究方向和方法正在被探索。如开发更有效和环保的木质素提取技术,使用气溶胶流反应器和球形木质素颗粒的制备。这些方法不仅能够有效地分离木质素,还能生成具有特定形态和大小的木质素颗粒,为其在高性能应用中的使用提供新的可能性。
综上所述,尽管面临挑战,但木质素作为一种可再生资源,在未来可持续发展中的角色不容忽视。通过不断的技术创新和跨学科研究,木质素的高附加值转化和应用将为实现更绿色、更可持续的未来做出重要贡献。
参考文献
SUBBOTINA E, RUKKIJAKAN T, MARQUEZ-MEDINA M D, et al. Oxidative cleavage of C—C bonds in lignin[J]. Nature Chemistry, 2021, 13: 1118-1125. [百度学术]
曲俊聪, 史成香, 张香文, 等 .用于木质素转化制备生物质燃料多功能催化剂的研究进展[J]. 工程科学学报, 2022, 44(4): 664-675. [百度学术]
QU J C, SHI C X, ZHANG X W, et al. Research progress on multifunctional catalysts for lignin transformation to produce biomass fuels[J]. Engineering Science, 2022, 44(4): 664-675. [百度学术]
GHAFFAR S H, FANM. Lignin in straw and its applications as an adhesive[J]. International Journal of Adhesion and Adhesives, 2014, 48: 92-101. [百度学术]
王文锦, 徐 莹, 王东玲, 等. 木质素氢解反应溶剂与催化剂研究进展[J]. 化工学报, 2019, 70(12): 4519-4527. [百度学术]
WANG W J, XU Y, WANG D L, et al. Research progress on solvents and catalysts for lignin hydrogenolysis reaction[J]. CIESC Journal, 2019, 70(12): 4519-4527. [百度学术]
姜 波, 金永灿. 基于木质素分子结构特性的功能材料研究进展[J]. 复合材料学报, 2022, 39(7): 3059-3083. [百度学术]
JIANG B, JIN Y C. Research progress on functional materials based on the molecular structure of lignin[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3059-3083. [百度学术]
WANG S, LI Z, BAI X, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2019.01.037. [百度学术]
MAHMOOD N, YUAN Z, SCHMIDT J, et al. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review[J]. Renewable and Sustainable Energy Reviews, DOI: 10.1016/j.rser.2016.01.037. [百度学术]
黄霞芸, 沈 青. 木质素与合成高分子共混的研究进展[J].纤维素科学与技术, 2007, 15(3): 61-73. [百度学术]
HUANG X Y, SHEN Q. Research progress on the blending of lignin and synthetic polymers[J]. Journal of Cellulose Science and Technology, 2007, 15(3): 61-73. [百度学术]
NORGREN M, EDLUND H. Lignin: Recent advances and emerging applications[J]. Current Opinion in Colloid & Interface Science, 2014, 19(5): 409-416. [百度学术]
李家全, 李鹏辉, 徐烨轩, 等. 木质素影响木质纤维原料酶解的作用机理及其研究进展[J]. 中国造纸, 2023, 42(3): 114-121. [百度学术]
LI J Q, LI P H, XU Y X, et al. Mechanism and Research Progress of Lignin Affecting the Enzymatic Hydrolysis of Lignocellulosic Raw Materials[J]. China Pulp & Paper, 2023, 42(3): 114-121. [百度学术]
许 凤, 程 鹏, 郭宗伟, 等. 低共熔溶剂木质素的分离及结构性质研究进展[J]. 北京林业大学学报, 2021, 43(4): 158-168. [百度学术]
XU F, CHENG P, GUO Z W, et al. Research progress on the separation and structural properties of lignin in low-melting solvents[J]. Journal of Beijing Forestry University, 2021, 43(4): 158-168. [百度学术]
ALEKHINA M, ERSHOVA O, EBERT A, et al. Softwood kraft lignin for value-added applications: Fractionation and structural characterization[J]. Industrial Crops and Products, 2015, 66: 220-228. [百度学术]
Gellerstedt G. Softwood kraft lignin: Raw material for the future [J]. Industrial Crops and Products, 2015, 77: 845-854. [百度学术]
LE F A, JOURDES M, TEISSEDRE P. Polysaccharides and lignin from oak wood used in cooperage: Composition interest assays: A review[J]. Carbohydrate Research, 2015, 417: 94-102. [百度学术]
FLÁVIA C M, RITA D C S, ALINE F, et al. The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods[J]. PLoS ONE, DOI: 10.1371/journal.pone.0110000. [百度学术]
GARCÍA A, GONZÁLEZ A M, SPIGNO G, et al. Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin[J]. Biochemical Engineering Journal, 2012,67:173-185. [百度学术]
JIN Z, AKIYAMA T, CHUNG B Y, et al. Changes in lignin content of leaf litters during mulching[J]. Phytochemistry, 2003, 64(5): 1023-1031. [百度学术]
CHEN A, JIN W, WEN J, et al. Efficient extraction of lignin from black liquor via a novel membrane-assisted electrochemical approach [J]. Electrochim Acta, 2013, 107: 611-618. [百度学术]
李梦竹, 王 霆. 抑制木质素降解中间体再聚合的研究进展[J]. 林产化学与工业, 2021, 41(4): 124-134. [百度学术]
LI M Z, WANG T. Research progress on inhibiting the re-polymerization of lignin degradation intermediates[J]. Chemistry and Industry of Forest Products, 2021, 41(4): 124-134. [百度学术]
GARCÍA A, ERDOCIA X, ALRIOLS M G, et al. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps [J]. Bioresource Technology, 2009, 100: 851-857. [百度学术]
郭亚玉, 许会敏, 赵媛媛, 等. 植物木质化过程及其调控的研究进展[J]. 中国科学: 生命科学, 2020, 50(2): 111-122. [百度学术]
GUO Y Y, XU H M, ZHAO Y Y, et al. Research progress on the process of plant lignification and its regulation[J]. Chinese Science: Life Sciences, 2020, 50(2): 111-122. [百度学术]
JORGE R. HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state[J]. Holzforschung, 2009, 63(6): 691-698. [百度学术]
CHÁVEZ-SIFONTES M, DOMINE M E. Lignin, structure and applications: Depolymerization methods for obtaining aromatic derivatives of industrial interest[J]. Avances En Ciencias E Ingeniería, 2013, 4: 15-46. [百度学术]
任苗苗, 吕惠生, 张敏华, 等. 木质素资源利用的研究进展[J]. 高分子通报, 2012, 25(8): 44-49. [百度学术]
REN M M, LYU H S, ZHANG M H, et al. Research Progress on the Application of Lignin[J]. Polymer Bulletin, 2012, 25(8): 44-49. [百度学术]
SCHMETZ Q, MANIET G, JACQUET N, et al. Comprehension of an organosolv process for lignin extraction on Festuca arundinacea and monitoring of the cellulose degradation[J]. Industrial Crops and Products, 2016, 94: 308-317. [百度学术]
刘 学, 李淑君, 刘守新, 等. 木质素纳米颗粒的制备及其功能化应用研究进展[J]. 生物质化学工程, 2020, 54(5): 53-65. [百度学术]
LIU X, LI S J, LIU S X, et al. Research progress on the preparation and functionalization of lignin nanoparticles[J]. Biomass Chemical Engineering, 2020, 54(5): 53-65. [百度学术]
陈祥云, 袁 冰, 于凤丽, 等. 木质素: 一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317. [百度学术]
CHEN X Y, YUAN B, YU F L, et al. Lignin: A potential source of biomass-based catalysts[J]. Progress in Chemistry, 2021, 33(2): 303-317. [百度学术]
ROMHÁNYI V, KUN D, PUKÁNSZKY B. Correlations among Miscibility, Structure, and Properties in Thermoplastic Polymer/Lignin Blends[J]. ACS Sustainable Chemistry & Engineering, DOI: 10.1021/acssuschemeng.8b02989. [百度学术]
LUO S, CAO J, MCDONALD A G. Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends [J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2016.12.024. [百度学术]
孙 楠, 邸明伟. 木质素在聚合物材料中应用的研究进展[J]. 高分子材料科学与工程, 2021, 37(5): 141-148. [百度学术]
SUN N, DI M W. Research progress on the application of lignin in polymer materials[J]. Polymer Materials Science and Engineering, 2021, 37(5): 141-148. [百度学术]
AGNELLI J A M, LANÇAS B Z, MAGNABOSCO R, et al. Lignin as additive in polypropylene/coir composites: Thermal, mechanical, and morphological properties[J]. Carbohydrate Polymers, DOI: 10.1016/j.carbpol.2011.11.041. [百度学术]
LOU T, CUI G, XUN J, et al. Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2017.10.012. [百度学术]
陈福泉, 赵永青, 冯彦洪, 等. 木质素/热塑性塑料复合材料界面增容的研究进展[J]. 化工学报, 2014, 65(3): 777-784. [百度学术]
CHEN F Q, ZHAO Y Q, FENG Y H, et al. Research progress on interfacial compatibilization of lignin/thermoplastic composite materials[J]. Journal of Chemical Industry and Engineering, 2014, 65(3): 777-784. [百度学术]
MA Y, DAI J, WU L, et al. Enhanced anti-ultraviolet, anti-fouling, and antibacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin[J]. Polymer (United Kingdom), DOI: 10.1016/j.polymer.2017.03.047. [百度学术]
FRANGVILLE C, RUTKEVIČIUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles [J]. ChemPhysChem, DOI: 10.1002/cphc.201200537. [百度学术]
MAHMOOD N, YUAN Z, SCHMIDT J, et al. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized kraft lignin via direct replacement or oxypropylation[J]. European Polymer Journal, DOI: 10.1016/j.eurpolymj.2015.04.030. [百度学术]
BORGES DA SILVA E A, ZABKOVA M, ARAÚJO J D, et al. An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin[J]. Chemical Engineering Research and Design, DOI: 10.1016/j.cherd.2008.12.013. [百度学术]
YADAV V K, GUPTA N, KUMAR P, et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology[J]. Materials, DOI: 10.3390/ma15030953. [百度学术]
BAKER D A, RIALS T G. Recent advances in low-cost carbon fiber manufacture from lignin[J]. Journal of Applied Polymer Science, 2013,130:713-728. [百度学术]
黄俊雅, 樊鑫炎, 王永贵. 木质素基聚乳酸复合膜的物理老化性能研究[J]. 中国造纸, 2023, 42(7): 31-40. [百度学术]
HUANG J Y, FAN X Y, WANG Y G. Study on Physical Aging Properties of Lignin-based Polylactic Acid Composite Films[J]. China Pulp & Paper, 2023, 42(7): 31-40. [百度学术]
JOHANSSON M, SKRIFVARS M, KADI N, et al. Effect of lignin acetylation on the mechanical properties of lignin-poly-lactic acid biocomposites for advanced applications[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2023.117049. [百度学术]
KUN D, PUKÁNSZKY B. Polymer/lignin blends: Interactions, properties, applications[J]. European Polymer Journal, 2017, 93: 618-641. [百度学术]
GORDOBIL O, EGÜÉS I, LABIDI J. Modification of eucalyptus and spruce organosolv lignins with fatty acids to use as filler in PLA [J]. Reactive and Functional Polymers, DOI: 10.1016/j.reactfunctpolym.2016.07.012. [百度学术]
REDDY A B, MANJULA B, SUDHAKAR K, et al. Polyethylene/other biomaterials-based biocomposites and bionanocomposites [J]. John Wiley & Sons, Inc., DOI: 10.1002/9781119038467.ch10. [百度学术]
SUPANCHAIYAMAT N, JETSRISUPARB K, KNIJNENBURG J T N, et al. Lignin materials for adsorption: Current trend, perspectives and opportunities[J]. Bioresource Technology, 2019,272: 570-581. [百度学术]
MEEK N, PENUMADU D, HOSSEINAEI O, et al. Synthesis and characterization of lignin carbon fiber and composites[J]. Composites Science and Technology, 2016, 137: 60-68. [百度学术]
MATHIAS A L, RODRIGUES A E. Production of vanillin by oxidation of pine kraft lignins with oxygen[J]. Holzforschung, 1995, 49: 273-278. [百度学术]
RICHARD F, STEFAN C. Catalytic pyrolysis of biomass for biofuels production [J]. Fuel Processing Technology, 2010, 91(1): 25-32. [百度学术]
SÁNCHEZ C. Lignocellulosic residues: Biodegradation and bioconversion by fungi [J]. Biotechnology Advances, 2009, 27: 185-194. [百度学术]
LAURICHESSE S, AVÉROUS L. Chemical modification of lignins: Towards biobased polymers[J]. Progress in Polymer Science, DOI: 10.1016/j.progpolymsci.2013.11.004. [百度学术]
TUMBALAM G A, LI D B, BERRUTI F, et al. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors[J]. Journal of Analytical and Applied Pyrolysis, 2014,106:33-40. [百度学术]
ARCHER D B, CONNERTON I F, MACKENZIE D A. Filamentous fungi for production of food additives and processing aids[J]. Advances in Biochemical Engineering/Biotechnology, 2008,111:99-147. [百度学术]
KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126-1140. [百度学术]
WANG X, RINALDI R. Hydrothermal liquefaction of lignocellulosic biomass[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2012, 6: 361-374. [百度学术]
SHAYESTEH K, MOHAMMADZADEH G, ZAMANLOO M. Study and optimization of parameters affecting the acetylation process of lignin sulfonate biopolymer[J]. International Journal of Biological Macromolecules, DOI: 10.1016/j.ijbiomac.2020.09.014. [百度学术]
赵一全, 张 慧, 张晓昱, 等. 木质素的微生物解聚与高值转化[J]. 微生物学报, 2020, 60(12): 2717-2733. [百度学术]
ZHAO Y Q, ZHANG H, ZHANG X Y, et al. Microbial depolymerization and valorization of lignin[J]. Acta Microbiologica Sinica, 2020, 60(12): 2717-2733. [百度学术]
SIPPONEN M H, LANGE H, CRESTINI C, et al. Lignin for Nano‐ and Microscaled Carrier Systems: Applications, Trends, and Challenges[J]. ChemSusChem, DOI: 10.1002/cssc.201900480. [百度学术]
GAO W, INWOOD J P W, FATEHI P. Sulfonation of Hydroxymethylated Lignin and Its Application[J]. Journal of Bioresources and Bioproducts, 2019, 4(2): 80-88. [百度学术]
熊福全, 王 航, 韩雁明, 等. 木质素微纳米球的制备与应用研究现状[J]. 林业科学, 2019, 55(8): 170-175. [百度学术]
XIONG F Q, WANG H, HAN Y M, et al. Research status of preparation and application of lignin micro/nano-spheres[J]. Forestry Science, 2019, 55(8): 170-175. [百度学术]
KWAK H W, LEE H, LEE K H. Surface-modified spherical lignin particles with superior Cr(VI) removal efficiency[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2019.124733. [百度学术]
秦国富, 刘一寰, 尹 帆, 等. 开环聚合接枝改性木质素[J]. 化学进展, DOI:10.7536/PC200225. [百度学术]
QIN G F, LIU Y H, YIN F, et al. Ring-opening polymerization graft modification of lignin[J]. Progress in Chemistry, DOI:10.7536/PC200225. [百度学术]
XIAO X, JIANG J, WANG Y, et al. Microwave-assisted Sulfonation of Lignin for the Fabrication of a High-performance Dye Dispersant[J]. ACS Sustainable Chemistry & Engineering, DOI: 10.1021/acssuschemeng.1c02148. [百度学术]
OUYANG X, KE L, QIU X, et al. Sulfonation of Alkali Lignin and Its Potential Use in Dispersant for Cement [J]. Journal of Dispersion Science and Technology, DOI: 10.1080/01932690802473560. [百度学术]
KONDURI M K, KONG F, FATEHI P. Production of carboxymethylated lignin and its application as a dispersant[J]. European Polymer Journal, DOI: 10.1016/J.EURPOLYMJ.2015.07.028. [百度学术]
CHEN J, ERAGHI K A, ALIPOORMAZANDARANI N, et al. Production of Flocculants, Adsorbents, and Dispersants from Lignin [J]. Molecules, DOI: 10.3390/molecules23040868. [百度学术]
MARIKO A, SIQI H, MARYAM B, et al. High-throughput synthesis of lignin particles(~30 nm to ~2 μm)via aerosol flow reactor: Size fractionation and utilization in Pickering emulsions[J]. ACS Applied Materials & Interfaces, 2016, 35(6): 23302-23310. [百度学术]
BAI L, GRECA L G, XIANG W, et al. Adsorption and Assembly of Cellulosic and Lignin Colloids at Oil/Water Interfaces[J]. Langmuir, DOI: 10.1021/acs.langmuir.8b01288. [百度学术]
PAWAR A B, CAGGIONI M, ERGUN R, et al. Arrested coalescence in Pickering emulsions[J]. Soft Matter, DOI: 10.1039/C1SM05457K. [百度学术]
WEI Z, YANG Y, YANG R, et al. Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization[J]. Green Chemistry, DOI: 10.1039/C2GC36278C. [百度学术]
YANG Y, WEI Z, WANG C, et al. Lignin-based Pickering HIPEs for macroporous foams and their enhanced adsorption of copper(ii) ions[J]. Chemical Communications, DOI: 10.1039/C3CC42270D. [百度学术]
ZHANG Z, MARÍN C B, LEFEBVRE M, et al. The preparation of stable spherical alkali lignin nanoparticles with great thermal stability and no cytotoxicity[J]. International Journal of Biological Macromolecules, DOI: 10.1016/j.ijbiomac.2022.09.272. [百度学术]
ÖSTERBERG M, SIPPONEN M H, MATTOS B D, et al. Spherical lignin particles: A review on their sustainability and applications[J]. Green Chemistry, DOI: 10.1039/d0gc00096e. [百度学术]
POSOKNISTAKUL P, TANGKRAKUL C, CHAOSUANPHAE P, et al. Fabrication and Characterization of Lignin Particles and Their Ultraviolet Protection Ability in PVA Composite Film[J]. ACS Omega, DOI: 10.1021/acsomega.0c02443. [百度学术]
SUGIARTO S, LEOW Y, TAN C L, et al. How far is Lignin from being a biomedical material? [J]. Bioactive Materials, DOI: 10.1016/j.bioactmat.2021.06.023. [百度学术]
STANISZ M, KLAPISZEWSKI Ł, COLLINS M N, et al. Recent progress in biomedical and biotechnological applications of lignin-based spherical nano- and microstructures: A comprehensive review[J]. Materials Today Chemistry, DOI: 10.1016/j.mtchem.2022.101198. [百度学术]
ZHANG Z, TERRASSON V, GUÉNIN E. Lignin Nanoparticles and Their Nanocomposites[J]. Nanomaterials, DOI: 10.3390/nano11051336. [百度学术]
FREITAS F M C, CERQUEIRA M A, GONÇALVES C, et al. Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment[J]. International Journal of Biological Macromolecules, DOI: 10.1016/j.ijbiomac.2020.09.110. [百度学术]
WANG S, ALI N. Spherical lignin nanostructures synthesis, functionalization, and removal of cationic dyes[J]. Journal of Water Process Engineering, DOI: 10.1016/j.jwpe.2023.103924. [百度学术]
STANISZ M, BACHOSZ K, SIWIŃSKA-CIESIELCZYK K, et al. Tailoring Lignin-based Spherical Particles as a Support for Lipase Immobilization[J]. Catalysts, DOI: 10.3390/catal12091031. CPP [百度学术]