摘要
本文总结了木质素基多孔碳材料的制备方法(活化法、模板法、水热法、微波法)和应用领域近年的研究热点,综述了木质素基多孔碳材料的最新研究进展,并结合研究中存在的技术问题,指出了未来研究中面临的挑战及预期的解决方案,并对木质素基多孔碳材料的发展方向进行了展望。
多孔碳材料是以碳为主体的一类具备高度发达的孔隙结构的新型材料,具有比表面积大、机械性能强、化学稳定性高、物理性质(导电性、导热性、热稳定性等)优良的特点,目前已应用于能源储存与转
木质素被认为是构建多孔碳材料的理想碳源,其储量丰富,约占生物圈中有机碳的30%,产量可达100亿t/
根据孔径大小,多孔碳通常分为微孔型(<2 nm)、介孔型(2~50 nm)、大孔型(>50 nm)、分级多孔型,其中微孔型一般通过直接热解法、活化法制备,介孔型可通过模板法获得,分级多孔型需使用双模板法或模板法-活化法联用获得。
多孔碳制备方法 | 活化剂/模板剂 | 温度/℃ | 质量比 | 比表面积/ | 孔隙体积/c | 总孔隙体积/c | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
微孔 | 中孔 | 大孔 | ||||||||
活化法 | 物理活化法 | CO2 | 550 | 1343 | 0.1 | 0.51 |
[ | |||
水蒸气 |
碳化:450 ℃ 活化:725 ℃ | 310.15 |
[ | |||||||
化学活化法 | H3PO4 | 500 | 木质素∶H3PO4=3∶1 | 1055 | 0.04 | 0.69 |
[ | |||
ZnCl2 | 500 | 木质素∶ZnCl2=1∶1 | 1347 | 0.64 | 0.15 | 0.93 |
[ | |||
模板法 | 硬模板法 | 沸石 | 700 | 木质素∶沸石=1∶1 | 716 |
[ | ||||
SiO2/CaCl2 | 700 | 木质素∶CaCl2∶SiO2=1∶1∶1 | 555 | 0.126 |
[ | |||||
木质素∶CaCl2∶SiO2=2∶2∶1 | 449 | 0.148 | ||||||||
木质素∶CaCl2∶SiO2=2∶2∶3 | 521 | 0.085 | ||||||||
NaCl | 500 | 木质素∶NaCl=1∶10 | 438 | 0.12 | 0.85 |
[ | ||||
软模板法 | 氯化胆碱/ZnCl2组成的DES溶剂 | 500 | 木质素∶氯化胆碱∶ZnCl2=11.4∶1∶3.8 | 943 | 0.021 | 1.05 |
[ | |||
Pluronic F127 | 600 | 木质素∶Pluronic F127=1∶3 | 466.1 | 0.62 |
[ | |||||
化学-模板法 | NaOH/NaCl | 800 | 木质素∶NaOH∶NaCl=2∶1∶1 | 1307 | 0.43 | 0.31 | 0.74 |
[ | ||
木质素∶NaOH∶NaCl 5∶6∶4 | 1308 | 0.41 | 0.54 | 0.95 | ||||||
KOH/埃洛石 | 800 | 木质素∶KOH∶埃洛石=9∶8∶3 | 1177.1 | 0.463 | 0.614 |
[ | ||||
双硬模板法 | Pluronic P123/SiO2 | 900 | 木质素∶Pluronic P123∶SiO2=5∶8∶2 | 803 | 0.89 |
[ | ||||
微波法 | KOH | 木质素∶KOH=1∶3 | 2866 | 0.7 | 1.3 | 2.02 |
[ | |||
木质素∶KOH=1∶4 | 2728 | 0.67 | 1.4 | 2.02 | ||||||
水热法 |
水热: ZnCl2 活化: KOH |
水热: 180 活化: 700 |
水热∶木质素∶ZnCl2=1∶1 活化∶水热炭∶KOH=1∶3 | 2955 | 1.4 | 1.67 |
[ | |||
水热: 质量分数5%的H2SO4溶液 活化: KOH |
水热: 180 活化: 800 |
水热∶木质素∶H2SO4 =1∶1 活化∶水热炭∶KOH=1∶3 | 1660 | 0.78 |
[ |
制备LPC的活化法一般分为物理活化法和化学活化法,不同的活化方式影响着LPC的比表面积和孔隙率。其中,物理活化法一般用于微孔调
物理活化法又称气体活化法,主要包括碳化和活化2个连续步骤。首先,木质素在一定的温度下碳化,转化为生物炭,然后引入氧化性气体(如CO2、水蒸气、O2),使其与生物炭中的碳原子进行化学反应,生成小分子气体,从而进行开孔、扩孔、造孔,在表面和内部形成一系列孔结
化学活化法分3个步骤:①将木质素与活化剂混合均匀;②在高温条件下进行热解;③去除活化剂。化学活化法常用的活化剂有ZnCl2、H3PO4、KOH、NaOH、H2SO4等,其中ZnCl2最早应用于工业生产。Gonzalez-Serrano等
模板法是一种可精确控制LPC孔隙结构与形貌的常见制备方法,主要分为硬模板法和软模板法。
硬模板法所用模板通常为具有多孔结构的刚性无机物,如硅基材料(介孔模板)、金属氧化物、分子筛(微孔模板)、有机分子及冰晶
沸石的壁厚均小于1 nm,是合成多孔碳材料的理想模板剂。Saini等
近年来,无机盐也常作为模板剂应用于LPC的制备,制备过程如

图1 硬模板法制备LPC的合成示意图
Fig. 1 Schematic diagram of the synthesis of LPC by hard template
金属氧化物也是常见的硬模板剂之一,以此制备LPC的过程如
硬模板法虽然是制备LPC最直接的方法,但由于常用模板去除剂腐蚀性强、容易影响LPC的结构稳定性、对环境污染大,且模板的去除通常耗时长、风险大、成本高,其工业化推广受到极大限制。因此,在不降低LPC性能的前提下,探求环境友好、价格低廉、易于去除的硬模板剂显得尤为重要。
通常,硬模板法使用预先合成的有机或无机模板,不涉及与前体的任何重要化学反应,所生成的LPC的结构与形态由模板的结构预先决定。区别于硬模板法,软模板法是利用各种物种和嵌段共聚物共同组装形成具有有序结构的材料,然后需在后期移除嵌段共聚物,且通过软模板法生成的模板可以进一步用作硬模
陈

图2 碱性条件下木质素、 间苯二酚与甲醛的反应机
Fig. 2 Reaction mechanism of lignin, resorcinol and formaldehyde under alkaline condition
活化-模板法结合了活化法和模板法的优点,为LPC的制备提供了新思路,有利于实现木质素的高效利用。Ponomarev等
双模板法由软、硬模板法演变而来,指多孔碳材料制备过程中采用2种模板剂。Li等

图3 LPC/SiO2的制备过程示意
Fig. 3 Schematic diagram of the fabrication process of LPC/SiO
水热碳化是指将碳源与水(溶剂和反应介质)混合放入密闭压力容器中,在自压力和一定温度下将碳源转变为富碳产物的方
微波法的原理是直接通过热辐射与材料内部的粒子接触,将热辐射的能量转化为材料内部的热量,可避免出现传统加热方式所导致的受热不均匀的问题。这种非接触式加热的方法,对反应的材料有一定的要求,应该选用能吸收微波能量的碳材料。与传统加热方式相比,微波加热法具有能够对介质均匀加热、升温快速、传热效率高的特点,在特定的反应中可以减少反应所需活化能,从而较大程度提高了反应的速率,使反应产生的气体向外扩散,对反应材料进行有效造孔。Chen等
水体污染已成为当今世界面临的重大环境问题之一,工业化和城镇化的快速发展导致向水体排放的有害污染物(染料、农药、抗生素及无机金属)呈指数级增长。多孔固体吸附净化法被认为是极具发展前景的水体净化技术,具有操作简便、耗能低、循环性能好等优
Liang等

图4 N-BLSAC对TC吸附的模型
Fig. 4 Model diagram of N-BLSAC adsorption on T
Zhu等
LPC因具备优良的导电性、化学稳定性及较大的比表面积,常被应用于电储能领域,其作为电极材料在超级电容器中的应用,近年来受到科研人员的广泛关
LPC作为超级电容器的电极材料目前面临着低电容的问题。研究表明,将LPC与聚苯胺结合可提高电容量,但LPC与聚苯胺之间的相容性差,易造成电容退化,导致其应用受限。Fu等
木质素/KOH溶液的固化导致KOH在木质素中结晶,其在热处理过程中既充当模板剂又充当活化剂。Zhang等
原料 | 制备方法 | 制备条件 | 最高比电容/F· | 最高容量/mA·h· | 参考文献 |
---|---|---|---|---|---|
木质素 | 直接热解法 | N2,10 mL/min,700 ℃,2 ℃/min | 333 | 123.7 |
[ |
酶解木质素 | 化学活化法 | Zn(NO3)2,N2,200 mL/min,800 ℃,2 h | 620 |
[ | |
碱木质素 | 活化法 | CO2/Na2CO3,N2,250 ℃,10 ℃/min,30 min,900 ℃,2 h;H2,800 ℃,1 h | 520 |
[ | |
碱木质素 | 活化法 | NaOH,N2,800 ℃,10 ℃/min,2 h | 71 |
[ | |
碱木质素 | 溶剂诱导自组装法 | Zn(NO3)2/NaC2O4,700 ℃,5 ℃/min,1.5 h | 305 |
[ | |
酶解木质素 | 活化法 | KOH,Ar,650 ℃,5 ℃/min,2 h | 250 |
[ | |
酶解木质素 | 自组装法、水热法、预先碳化法、活化法 | THF;水热处理,160 ℃,12 h;预先碳化,N2,3 ℃/min,2 h;KOH,N2,800 ℃,3 ℃/min,2 h | 254.2 |
[ | |
木质素磺酸盐 | 模板法 | SiO2、多巴胺,30 ℃,24 h;N2,400 ℃,2 h;900 ℃,3 h | 412 |
[ | |
木质素磺酸盐 | 原位氧化聚合法 | 苯胺,6 h;过硫酸铵,24 h | 643 |
[ | |
碱木质素 | 静电诱导自组装、双模板法 | Al,SiO2,2 h | 1109 |
[ |
近年来,LPC因其独特的结构特征和物化特性,被认为是一种极具发展潜力的催化载体,引起了催化领域研究学者的广泛关

图5 用于催化领域的LPC制备流程示意图
Fig. 5 Schematic diagrams of the preparation process of LPC for catalysis
路幸
LPC具有极高的比表面积、高度开放的骨架结构及快速的气体吸脱附性能,因此,可以作为一类极具吸引力的物理吸附材料,在气体吸附和CO2、H2的存储领域发挥重要作

图6 通过Na2SO3和NaOH水溶液降解木质素制备LPC的流程
Fig. 6 Flow chart of preparing LPC by degrading lignin with Na2SO3 and NaOH aqueous solutio
Sani等
木质素基多孔碳材料(LPC)的制备与应用不仅可实现木质素高价值化应用,还可有效解决传统多孔碳材料成本较高、环境危害较大等问题,且通过对木质素进行预处理,可使LPC的结构性能得到提升,在可持续发展和绿色化学方面具有巨大潜力。通过对近年来LPC制备及应用的研究进行分析、思考,现总结如下。
(1)模板法常用的模板剂与去除模板所用的强酸、强碱对环境危害大是限制其广泛应用的主要原因。探求无毒、无污染、低成本、易去除的模板剂,是实现LPC大规模工业化生产的关键,采用NaCl做为模板剂是实现绿色化生产的新途径。
(2)木质素具有高度不规则的复杂结构,其决定了木质素功能应用更依赖于预处理工艺。根据不同的木质素结构选择适宜的预处理方式或活化剂,可有效提高LPC的性能。
(3)在电储能领域,将LPC作为电极材料为该领域的发展提供一种绿色环保、可行性强的新策略,其可降低电极材料的成本,并增加电化学电容器的能量密度;在水体净化领域,可根据目标污染物的结构特征,通过成孔技术和后改性方法控制LPC的孔隙率、孔径分布和活性位点,进而提高从多组分系统中回收目标组分的效果;在催化领域,新型的LPC催化材料,大多研究还处于实验室阶段,未来的研究中需要更多地考虑生产工艺、原料、成本等问题,才能真正实现木质素的高价值化应用。
参 考 文 献
杨媛媛, 燕映霖, 赵颖娟, 等. 杜仲皮残渣基多孔碳/硫复合材料的制备及电性能研究[J]. 化工新型材料, 2022, 50(8): 141-146. [百度学术]
YANG Y Y, YAN Y L, ZHAO Y J, et al. Preparation and Electrical Properties of Eucommia Bark Residue-based Porous Carbon/Sulfur Composites[J]. New Chemical Material, 2022, 50(8): 141-146. [百度学术]
段志鹏, 李明珠, 胡茂峰, 等. 空心囊泡状多孔碳的储钾性能[J]. 电池, 2022, 52(5): 512-516. [百度学术]
DUAN Z P, LI M Z, HU M F, et al. Potassium Storage Performance of Hollow Vesicular Porous Carbon[J]. Battery Bimonthly, 2022, 52(5): 512-516. [百度学术]
孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. [百度学术]
KONG X Y, XIE L, WANG Y M, et al. CO2 Capture and Resource Utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198. [百度学术]
王安琪, 周思琪, 杨艾琳, 等. ZIF-67衍生Co、Mo、S共掺杂的富氮多孔碳材料制备及其电催化性能研究[J]. 化工新型材料, 2022, 50(4): 213-215,219. [百度学术]
WANG A Q, ZHOU S Q, YANG A L, et al. Preparation and Electrocatalytic Property of ZIF-67 Derived Co, Mo, S Co-doped Nitrogen-rich Porous Carbon Material[J]. New Chemical Materials, 2022, 50(4): 213-215,219. [百度学术]
附青山, 张磊, 张伟, 等. 金属-有机框架材料对废水中污染物的吸附研究进展[J]. 材料导报, 2021, 35(11): 11100-11110. [百度学术]
FU Q S, ZHANG L, ZHANG W, et al. Research Progress in Metal-organic Frame Materials for Adsorptive Removal of Contamination in Wastewater[J]. Materials Reports, 2021, 35(11): 11100-11110. [百度学术]
CHEN W J, ZHAO C X, LI B Q, et al. Lignin-derived materials and their applications in rechargeable batteries[J]. Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2021.130106. [百度学术]
王晓波, 赵青山, 程智年, 等. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677. [百度学术]
WANG X B, ZHAO Q S, CHENG Z N, et al. Design, Synthesis and Application of High Performance Carbon Based Energy Storage Materials[J]. CIESC Journal, 2020, 71(6): 2660-2677. [百度学术]
林菊, 马阳阳, 李苗云, 等. 传统熏烤木材中木质素结构表征及其热解特性[J].食品科学, 2023, 44(2): 32-38. [百度学术]
LIN J, MA Y Y, LI M Y, et al. Characterization of Lignin Structure and Its Pyrolysis Characteristics in Traditional Fumigated Wood[J]. Food Science, 2023, 44(2): 32-38. [百度学术]
Zhang Liming, Larsson Anette, Moldin Annelie, et al. Comparison of Lignin Distribution, Structure, and Morphology in Wheat Straw and Wood[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop. 2022.115432. [百度学术]
Baynast H D, Tribot A, Niez B, et al, Effects of Kraft Lignin and Corn Cob Agro-residue on the Properties of Injected-moulded Biocomposites[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2021.114421. [百度学术]
RODRÍGUEZ-MIRASOL J, CORDERO T, RODRIGUEZ J J. Activated Carbons from Carbon Dioxide Partial Gasification of Eucalyptus Kraft Lignin[J]. Energy & Fuels, 1993, 7(1): 133-138. [百度学术]
FU K F, YUE Q Y, GAO B Y, et al. Preparation, characterization and application of lignin-based activated carbon from black liquor lignin by steam activation[J]. Chemical Engineering Journal, 2013, 228: 1074-1082. [百度学术]
蒲瀛州, 徐绍平, 王克超, 等. 磷酸法木质素基活性炭活化过程研究[J]. 大连理工大学学报, 2020, 60(4): 349-357. [百度学术]
PU Y Z, XU S P, WANG K C, et al. Study on Activation Process of Lignin-based Activated Carbon by Phosphate Method[J]. Journal of Dalian University of Technology, 2020, 60(4): 349-357. [百度学术]
GONZALEZ-SERRANO E, CORDERO T, RODRÍGUEZ-MIRASOL J, et al. Development of Porosity upon Chemical Activation of Kraft Lignin with ZnCl2[J]. Industrial & Engineering Chemistry Research, 1997, 36(11): 4832-4838. [百度学术]
SAINI K, SAHOO A, BISWAS B, et al. Preparation and Characterization of Lignin-derived Hard Templated Carbon(s): Statistical Optimization and Methyl Orange Adsorption Isotherm Studies[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2021. 125924. [百度学术]
WU K J, LIU Y, YANG C Y. Tuning the Mesopore Size of Lignin-based Porous Carbon via Salt Templating for Kraft Lignin Decomposition[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2022.114865. [百度学术]
XIE A T, DAI J D, CHEN Y, et al. NaCl-template Assisted Preparation of Porous Carbon Nanosheets Started from Lignin for Efficient Removal of Tetracycline[J]. Advanced Powder Technology, 2019, 30(1): 170-179. [百度学术]
陈玲. 基于低共熔溶剂的木质素/酚醛树脂多孔炭的构筑及性能调控[D].南京: 南京林业大学, 2021. [百度学术]
CHEN L. DES Induced Fabrication and Functionalization of Lignin/RF-based Porous Carbon[D]. Nanjing: Nanjing Forestry University, 2021. [百度学术]
QIN H F, JIAN R H, BAI J R, et al. Influence of Molecular Weight on Structure and Catalytic Characteristics of Ordered Mesoporous Carbon Derived from Lignin[J]. ACS Omega, 2018, 3(1): 1350-1356. [百度学术]
PONOMAREV N, SILLANPÄÄ M. Combined Chemical-templated Activation of Hydrolytic Lignin for Producing Porous Carbon[J]. Industrial Crops and Products, 2019, 135: 30-38. [百度学术]
倪凯, 潘虹, 沈勇, 等. 基分级多孔碳复合相变材料的制备与性能研究[J]. 功能材料, 2022, 53(1): 1175-1180. [百度学术]
NI K, PAN H, SHEN Y, et al. Preparation and Properties of Lignin Based Graded Porous Carbon Composite Phase Change Materials[J]. Journal of Functional Materials, 2022, 53(1): 1175-1180. [百度学术]
LI H, YUAN D, TANG C H, et al. Lignin-derived Interconnected Hierarchical Porous Carbon Monolith with Large Areal/Volumetric Capacitances for Supercapacitor[J]. Carbon, 2016, 100: 151-157. [百度学术]
CHEN W, WANG X, FEIZBAKHSHAN M, et al. Preparation of Lignin-based Porous Carbon with Hierarchical Oxygen-enriched Structure for High-performance Supercapacitors[J]. Journal of Colloid and Interface Science. 2019, 540: 524-534. [百度学术]
WU Y, CAO J P, ZHAO X Y, et al. High-performance Electrode Material for Electric Double-layer Capacitor Based on Hydrothermal Pretreatment of Lignin by ZnCl2[J]. Applied Surface Science, 2020, 508: 1-34. [百度学术]
GUO N N, LI M, SUN X K, et al. Enzymatic Hydrolysis Lignin Derived Hierarchical Porous Carbon for Supercapacitors in Ionic Liquids with High Power and Energy Densities[J]. Green Chemistry, 2017, 19(11): 2595-2602. [百度学术]
曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. [百度学术]
ZENG M Z, SHE Y Q, HU Y B, et al. Research Progress on Preparation and Application of Lignin Porous Charcoal[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. [百度学术]
侯兴隆, 许伟, 刘军利, 等. 木质素基多孔炭材料的制备及应用研究进展[J]. 林产化学与工业, 2022, 42(1): 131-138. [百度学术]
HOU X L, XU W, LIU J L, et al. Research Progress on Preparation and Application of Lignin-based Porous Carbon Materials[J]. Chemistry and Industry of Forest Products, 2022, 42(1): 131-138. [百度学术]
MALGRAS V, TANG J, WANG J, et al. Fabrication of Nanoporous Carbon Materials with Hard- and Soft-Templating Approaches: A Review[J]. Journal of Nanoscience and Nanotechnology, 2019, 19: 3673-3685. [百度学术]
欧阳杰, 李雪, 祝玉鑫, 等. 开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2还原[J]. 材料研究学报, 2022, 36(2): 152-160. [百度学术]
OUYANG J, LI X, ZHU Y X, et al. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. Chinese Journal of Materials Research, 2022, 36(2): 152-160. [百度学术]
LIU D, YUAN W W, DENG L L, et al. Preparation of Porous Diatomite-templated Carbons with Large Adsorption Capacity and Mesoporous Zeolite K-H as a Byproduct[J]. Colloid Interface, 2014, 424: 22-26. [百度学术]
任腾飞, 朱竹军, 董鸿波, 等. 树脂包覆ZIF-67衍生物制备Co-基氮掺杂多孔碳材料作为氧还原反应催化剂的研究[J]. 化学通报, 2022, 85(7): 822-826. [百度学术]
REN T F, ZHU Z J, DONG H B, et al. Study on Co-based Nitrogen Doped Porous Carbon Materials Prepared by Resin Coated ZIF-67 Derivatives as Oxygen Reduction Catalyst[J]. Chemistry Bulletin, 2022, 85(7): 822-826. [百度学术]
ZHANG W, CHENG R R, BI H H. A Review of Porous Carbons Produced by Template Methods for Supercapacitor Applications[J]. New Carbon Materials, 2021, 36(1): 69-81. [百度学术]
VALERO-ROMERO M J, MÁRQUEZ-FRANCO E M, BEDIA J, et al. Hierarchical Porous Carbons by Liquid Phase Impregnation of Zeolite Templates with Lignin Solution[J]. Microporous and Mesoporous Materials, 2014, 196: 68-78. [百度学术]
ZHANG B P, YANG D J, QIU X Q, et al. Fabricating ZnO/Lignin-derived Flower-like Carbon Composite with Excellent Photocatalytic Activity and Recyclability[J]. Carbon, 2020, 162: 256-266. [百度学术]
PAVLENKOAS V, KHOSRAVI H S, ŻÓŁTOWSKA S, et al. A Comprehensive Review of Template-assisted Porous Carbons: Modern Preparation Methods and Advanced Applications[J]. Materials Science & Engineering R, DOI: 10.1016/j.mser.2022.100682. [百度学术]
SEO J, PARK H, SHIN K, et al. Lignin-derived Macroporous Carbon Foams Prepared by Using Poly(Methyl Methacrylate) Particles as the Template[J]. Carbon, 2014, 76: 357-367. [百度学术]
HUANG S, YANG D J, ZHANG W L, et al. Dual-templated Synthesis of Mesoporous Lignin-derived Honeycomb-like Porous Carbon/SiO2 Composites for High-performance Li-ion Battery[J]. Microporous and Mesoporous Materials, DOI: 10.1016/j.micromeso. 2021.111004. [百度学术]
LI H S, SHI F Y, AN Q D, et al. Three-dimensional Hierarchical Porous Carbon Derived from Lignin for Supercapacitors: Insight into the Hydrothermal Carbonization and Activation[J]. International Journal of Biological Macromolecules, 2021, 166: 923-933. [百度学术]
金 灿, 刘云龙, 霍淑平, 等. 木质素基多孔炭材料及其在水体净化中的应用研究进展[J]. 林产化学与工业, 2021, 41(4): 111-123. [百度学术]
JIN C, LIU Y L, HUO S P, et al. Research Progress on Lignin-based Porous Carbon Materials and Their Application in Water Purification[J]. Chemistry and Industry of Forest Products, 2021, 41(4): 111-123. [百度学术]
WANG X, LIU Y C, CHEN M Z, et al. Direct Microwave Conversion from Lignin to Micro/Meso/Macroporous Carbon for High-performance Symmetric Supercapacitors[J]. ChemElectroChem, 2019, 6(18): 4789-4800. [百度学术]
LIU Y L, JIN C, YANG Z Z, et al. Recent Advances in Lignin-based Porous Materials for Pollutants Removal from Wastewater[J]. International Journal of Biological Macromolecules, 2021, 187: 880-891. [百度学术]
ZHANG Z, CANO Z P, LUO D, et al. Rational Design of Tailored Porous Carbon-based Materials for CO2 Capture[J]. Journal of Materials Chemistry A, 2019, 7(37): 20985-21003. [百度学术]
LIANG H X, DING W, ZHANG H W, et al. A Novel Lignin-based Hierarchical Porous Carbon for Efficient and Selective Removal of Cr(VI) from Wastewater[J]. International Journal of Biological Macromolecules, 2022, 204: 310-320. [百度学术]
TIAN Y X, ZHOU H F. A Novel Nitrogen-doped Porous Carbon Derived from Black Liquor for Efficient Removal of Cr(VI) and Tetracycline: Comparison with Lignin Porous Carbon[J]. Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2021.130106. [百度学术]
ZHU S Y, XU J, WANG B, et al. Highly Efficient and Rapid Purification of Organic Dye Wastewater Using Lignin-derived Hierarchical Porous Carbon[J]. Journal of Colloid and Interface Science, 2022, 625: 158-168. [百度学术]
LIU H Y, CHEN H S, SHI K Y, et al. Lignin-derived Porous Carbon for Zinc-ion Hybrid Capacitor[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2022.115519. [百度学术]
XI Y B, YANG D J, LOU H M, et al. Designing the Effective Microstructure of Lignin-based Porous Carbon Substrate to Inhibit the Capacity Decline for SnO2 Anode[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2020.113179. [百度学术]
XI Y B, WANG Y B, YANG Y Y, et al. K2CO3 Activation Enhancing the Graphitization of Porous Lignin Carbon Derived Frsom Enzymatic Hydrolysis Lignin for High Performance Lithium-ion Storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. [百度学术]
袁康帅, 郭大亮, 张子明, 等. 碱木质素基多孔碳材料的制备及其在超级电容器中的应用[J]. 中国造纸, 2019, 38(6): 47-53. [百度学术]
YUAN K S, GUO D L, ZHANG Z M, et al. Preparation of Alkali Lignin-based Porous Carbon Material and Its Application in Supercapacitors[J]. China Pulp & Paper, 2019, 38(6): 47-53. [百度学术]
FU F B, WANG H, YANG D J, et al. Lamellar Hierarchical Lignin-derived Porous Carbon Activating the Capacitive Property of Polyaniline for High-performance Supercapacitors[J]. Journal of Colloid and Interface Science, 2022, 617: 694-703. [百度学术]
ZHANG W L, LIN H B, LIN Z Q. 3D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-free Method[J]. ChemSusChem, 2015, 8(12): 2114-2122. [百度学术]
WANG H, LIU C L, FENG P X, et al. Solvent-induced Molecular Structure Engineering of Lignin for Hierarchically Porous Carbon: Mechanisms and Supercapacitive Properties[J]. Industrial Crops and Products, DOI: 10.1016/j.indcrop.2022.115831. [百度学术]
房严严, 张千玉, 张东东, 等. 基于富含木质素的生物质残渣制备超级电容器[J]. 新型炭材料, 2022, 37(4): 743-751. [百度学术]
FANG Y Y, ZHANG Q Y, ZHANG D D, et al. Preparation of Supercapacitor Based on Biomass Residue Rich in Lignin[J]. New Carbon Materials, 2022, 37(4): 743-751. [百度学术]
WANG H, XIONG F Q, GUO F, et al. Constructing Monodisperse Blueberry-like Lignin-based Porous Carbon Nanospheres for High-performance Supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, DOI: 10.1016/j.colsurfa.2022.130237. [百度学术]
ZHOU B J, LI Z G, LIU W, et al. Hierarchical Porous Carbon/Kraft Lignin Composite with Significantly Improved Superior Pseudocapacitive Behavior[J]. Electrochimica Acta, DOI: 10.1016/j.electacta.2021.139307. [百度学术]
王 程, 曹 强, 张玉全, 等. 活性炭材料作为载体的应用进展[J]. 化工新型材料, 2019, 47(8): 23-27. [百度学术]
WANG C, CAO Q, ZHANG Y Q, et al. Application Progress of Activated Carbon Materials as Carriers[J]. New Chemical Materials, 2019, 47(8): 23-27. [百度学术]
GAN L H, LYU L, SHEN T R, et al. Sulfonated Lignin-derived Ordered Mesoporous Carbon with Highly Selective and Recyclable Catalysis for the Conversion of Fructose into 5-Hydroxymethylfurfural[J]. Applied Catalysis A: General, 2019, 574: 132-143. [百度学术]
WANG X Q, QIU M, TANG Y W, et al. Synthesis of Sulfonated Lignin-derived Ordered Mesoporous Carbon for Catalytic Production of Furfural from Xylose[J]. International Journal of Biological Macromolecules, 2021, 187: 232-239. [百度学术]
路幸缘. 木质素多孔碳材料的制备及其催化氧化苯甲醇性能的研究[D]. 北 京: 北京化工大学, 2020. [百度学术]
LU X Y. Lignin Porous Carbon Materials for Benzyl Alcohol Oxidation[D]. Beijing: Beijing University of Chemical Technology, 2020. [百度学术]
YAN D Y, HAN Y, MA Z H, et al. Magnesium Lignosulfonate-derived N,S Co-doped 3D Flower-like Hierarchically Porous Carbon as an Advanced Metal-free Electrocatalyst Towards Oxygen Reduction Reaction[J]. International Journal of Biological Macromolecules, 2022, 209(A): 904-911. [百度学术]
郝文博. 碳负载硼钴催化材料制氢性能的研究[D]. 北京: 北京化工大学, 2021. [百度学术]
HAO W B. Study on the Performance of Carbon-supported Boron-cobalt Catalytic Material for Hydrogen Production[D]. Beijing: Beijing University of Chemical Technology, 2021. [百度学术]
TERZYK A, FXIRMANIAK S, GAUDEN P, et al. Novel Carbon Adsorbents[M]. Amsterdam: Elsevier, 2012: 77-80. [百度学术]
MEMETOVA A, TYAGI I, KARRI R R, et al. Porous Carbon-based Material as a Sustainable Alternative for the Storage of Natural Gas (Mthane) and Biogas (Biomethane): A Review[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2022.137373. [百度学术]
SANGCHOOM W, MOKAYA R. Valorization of Lignin Waste: Carbons from Hydrothermal Carbonization of Renewable Lignin as Superior Sorbents for CO2 and Hydrogen Storage[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1658-1667. [百度学术]
HU W Q, LI Y, ZHENG M T, et al. Degradation of Biomass Components to Prepare Porous Carbon for Exceptional Hydrogen Storage Capacity[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5418-5426. [百度学术]
SANI S, L XIN, LI M, et al. Synthesis and Characterization of Three-dimensional Interconnected Large-pore Mesoporous Cellular Lignin Carbon Materials and Their Potential for CO2 Capture[J]. Microporous and Mesoporous Materials, DOI: 10.1016/j.micromeso. 2022.112334. [百度学术]
GUO H W, CHEN Y F, YANG S, et al. Lignin-based Adsorbent-catalyst with High Capacity and Stability for Polychlorinated Aromatics Removal[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2021.125453. CPP [百度学术]