摘要
以淀粉、甲基丙烯酸甲酯、丙烯酸丁酯和甲基丙烯酸为主要原料,通过自由基聚合法进行接枝共聚制备了水性丙烯酸酯无氟防油剂,对其化学结构、粒径、Zeta电位和成膜性进行了分析。将水性丙烯酸酯防油剂涂布在原纸上制得食品包装用防油纸,对防油纸的动态油接触角、防油防水性能、耐高温性能、抗冷冻性能和再制浆性能进行了研究。结果表明,合成的水性丙烯酸酯防油剂粒径分布均匀,稳定性良好,平均粒径和Zeta电位分别为254.2 nm和-39.74 mV;防油剂可赋予纸张优良的防油性和防水性,当涂布量为7.5 g/
食品包装领域中广泛使用塑料、玻璃、金属和纸等材料,其中塑料在全球包装市场上占主导地
水性丙烯酸酯乳液是一种环境友好型涂料,具有成膜性好、食品安全性高、应用方便等优势,在涂料制备、食品包装和热封材料等领域具有广阔的应用前
木薯淀粉(食品级),湖南瑞福尼新材料科技有限公司;甲基丙烯酸甲酯(分析纯)、甲基丙烯酸(分析纯),上海麦克林生化科技有限公司;丙烯酸丁酯、过硫酸铵、正庚烷、蓖麻油、甲苯、氢氧化铵(均为分析纯)、十二烷基硫酸钠(化学纯),国药集团化学试剂有限公司;原纸(漂白针叶木浆和漂白化学阔叶木浆质量比为30∶70,定量80 g/
GZX-9076 MBE数显鼓风干燥箱,上海博迅实业有限公司医疗设备厂;FD-1A-50真空冷冻干燥机,北京博医康实验仪器有限公司;BeNano90纳米粒度电位仪,丹东百特仪器有限公司;Vertex 70v傅里叶变换红外光谱仪,德国Bruker公司;JSM-7900F扫描电子显微镜,日本电子株式会社;FCA2000A接触角测量仪,上海艾飞思精密仪器有限公司;ZAA 2300自动片状涂布器,瑞士杰恩尔Zehntner;YT-Cobb125可勃吸收性测定仪,杭州轻通仪器开发公司;VD5-A纤维标准疏解机、TD10-200A纸页成型器,咸阳通达轻工设备有限公司。
分别称取3.0 g木薯淀粉、4.5 g十二烷基硫酸钠和0.75 g过硫酸铵,置于250 mL三颈烧瓶中,加入90.0 g去离子水搅拌,转速设定为250 r/min,在80 ℃下加热30 min,然后将18.0 g甲基丙烯酸甲酯、18.0 g丙烯酸丁酯和1.5 g甲基丙烯酸置于烧杯中混合,通过恒压滴液漏斗缓慢滴加到反应体系中,在80 ℃下持续反应2.5 h,冷却至室温后完成反应,用200目滤网过滤,使用氨水将pH值调节至7,制得无氟水性丙烯酸酯防油剂。
采用傅里叶变换红外光谱仪(FT-IR)对试样进行红外光谱分析。将试样冷冻干燥后与KBr混合研磨,放入压片机中,在20 MPa条件下压成薄片,放入仪器中进行测试,扫描范围为400~4000 c
将制得的防油剂采用自动片状涂布器对原纸进行表面涂布(刮棒涂布,
根据TAPPI 559cm—12标准来确定防油纸的防油等级,以防油等级代表纸张的防油阻隔性能。将不同比例的蓖麻油、正庚烷和甲苯充分混合,制备出12种不同检测级别的测试油,将测试油滴在纸上15 s后,用纸巾擦去测试油,立即检查实验区域是否因渗透而变色,测试的防油等级为保留在纸面且不会被渗透而变色的最高测试油等级。将纸张分为5个区域,计算出每个区域测得防油等级的平均值。
纸张的防水性能根据GB/T 1540—2002《纸和纸板吸水性的测定——可勃法》测定。采用可勃吸收性测定仪在室温下进行表面吸水性测试,将纸张涂布面与100 mL去离子水接触60 s,立即去除纸张表面多余的水分,测量纸张接触水前后的质量。
水性丙烯酸酯防油剂的FT-IR谱图如

图1 水性丙烯酸酯防油剂的FT-IR谱图
Fig. 1 FT-IR spectrum of waterborne acrylate oil-resistant agent
防油剂的粒径和Zeta电位结果如

图2 水性丙烯酸酯防油剂的粒径、PDI和Zeta电位
Fig. 2 Particle size, PDI, and Zeta potential of waterborne acrylate oil-resistant agent
防油剂涂布前后纸张表面微观结构如

图3 防油处理前后纸张表面的SEM图(×1000)
Fig. 3 SEM images of paper surface before and after oil resistance treatment(×1000)
涂布前后纸张表面的动态油接触角如

图4 防油处理前后纸张的油接触角图
Fig. 4 Oil contact angle diagram of paper before and after oil resistance treatment

图5 原纸防油处理前后纸张的动态油接触角
Fig. 5 Dynamic oil contact angle of paper before and after coating
纸张防油防水性能见
涂布量/g· | 防油等级/级 | Cobb值/g· |
---|---|---|
0 | 0 | 24.2 |
2.1 | 2.2 | 21.4 |
3.5 | 4.6 | 15.2 |
4.1 | 6.6 | 12.7 |
5.0 | 7.2 | 10.2 |
6.0 | 9.0 | 6.9 |
7.5 | 10.2 | 1.9 |
经200 ℃,10 min高温处理后,防油纸的防油等级变化如
涂布量/g· | 高温处理前防油等级/级 | 高温处理后防油等级/级 |
---|---|---|
4.1 | 6.6 | 5.2 |
5.0 | 7.2 | 6.6 |
6.0 | 9.0 | 8.0 |
7.5 | 10.2 | 9.0 |
在-18℃ 条件下冷冻处理10天后,防油纸的防油等级变化如
涂布量/g· | 冷冻处理前防油等级/级 | 冷冻10天后防油等级/级 |
---|---|---|
4.1 | 6.6 | 6.8 |
5.0 | 7.2 | 7.3 |
6.0 | 9.0 | 8.8 |
7.5 | 10.2 | 10.0 |
防油纸的再制浆性能如

图6 覆塑纸、原纸和防油纸的疏解状况
Fig. 6 Dissociation of plastic film paper, base paper, and oil-resistant paper
3.1 采用淀粉、甲基丙烯酸甲酯、甲基丙烯酸和丙烯酸丁酯为主要原料,以十二烷基硫酸钠为乳化剂,过硫酸铵为引发剂,通过自由基乳液聚合法成功合成了水性丙烯酸酯防油剂。该防油剂粒径分布均匀,稳定性良好,平均粒径254.2 nm,PDI为0.365,Zeta电位为-39.74 mV,且具有良好的成膜性和阻油性。
3.2 经防油剂处理后的纸张具有显著的防油防水性能,当涂布量为7.5 g/
3.3 经防油处理后的纸张具有良好的耐高温性和抗冷冻性,经200 ℃,10 min高温处理或-18℃冷冻处理后,防油性能变化无明显降低;防油纸再制浆性能好,经水力疏解后,可快速成浆,可回收性能好。
参 考 文 献
Manuel Garrido-Romero, Roberto Aguado, Ana Moral, et al. From traditional paper to nanocomposite films: Analysis of global research into cellulose for food packaging[J]. Food Packaging and Shelf Life, DOI:10.1016/J.FPSL.2021.100788. [百度学术]
Mengqing Kan, Shelie A Miller. Environmental impacts of plastic packaging of food products[J]. Resources, Conservation & Recycling, DOI:10.1016/J.RESCONREC.2022.106156. [百度学术]
刘晓菲,张 雪,程 芸,等. 多糖聚合物涂层对纸基包装材料水蒸气阻隔性能的研究进展[J]. 中国造纸学报, 2021, 36 (4): 76-84. [百度学术]
LIU X F, ZHANG X, CHENG Y, et al. Research Progress on the Water Vapor Barrier Properties of Paper-based Packaging Materials Coated by Polysaccharide Polymers [J]. Transactions of China Pulp and Paper, 2021, 36(4): 76-84. [百度学术]
Li D D, Hu D G, Tan J H, et al. Design and synthesis of dimer acid-based waterborne polyurethane as water- and oil-resistant coating for paper substrates[J]. Materials & Design, DOI:10.1016/J.MATDES.2021.110142. [百度学术]
Dai L, Xi X J, Li X Y, et al. Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging[J]. Carbohydrate Polymers, DOI:10.1016/J.CARBPOL.2021.118425. [百度学术]
Preeti Tyagi, Khandoker Samaher Salem, Martin A Hubbe, et al. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products—A review[J]. Trends in Food Science & Technology, 2021, 115: 461-485. [百度学术]
Sheng Junjiao, Li Junron, Zhao Lihong. Fabrication of grease resistant paper with non-fluorinated chemicals for food packaging[J]. Cellulose, 2019, 26(10): 1-12. [百度学术]
徐冰冰,杨国超,张求慧. 纸质食品包装材料防水防油改性的研究进展[J]. 包装工程, 2021, 42 (3): 107-115. [百度学术]
XU B B, YANG G C, ZHANG Q H. Research Progress of Water-proof and Oil-proof Modification of Paper Food Packaging Materials[J]. Packaging Engineering, 2021, 42(3): 107-115. [百度学术]
Wang Zhanyun, Cousins Ian T, Scheringer Martin, et al. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors[J]. Environment International, 2013, 60: 242-248. [百度学术]
Hossain Rakibul, Tajvidi Mehdi, Bousfield Douglas, et al. Multi-layer oil-resistant food serving containers made using cellulose nanofiber coated wood flour composites[J]. Carbohydrate Polymers, DOI:10.1016/J.CARBPOL.2021.118221. [百度学术]
Preeti Tyagi, Lucian A Lucia, Martin A Hubbe, et al. Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance[J]. Carbohydrate Polymers, 2019, 206: 281-288. [百度学术]
Ali H Tayeb, Mehdi Tajvidi, Douglas Bousfield. Paper-based Oil Barrier Packaging using Lignin-containing Cellulose Nanofibrils[J]. Molecules, DOI:10.3390/molecules25061344. [百度学术]
朱清浩,谈继淮,李丹丹, 等. 多功能壳聚糖基防油剂在防油纸中的研究进展[J]. 精细化工, 2021, 38 (12): 2404-2414. [百度学术]
ZHU Q H, TAN J H, LI D D, et al. Research progress on multifunctional chitosan based oil-repellent agent in grease-proof paper[J]. Fine Chemicals, 2021, 38(12): 2404-2414. [百度学术]
张海艳,程 芸,赵雨萌,等. 利用丙烯酸酯共聚物改善纸浆模塑包装材料防水防油性能研究[J]. 中国造纸, 2022, 41(4): 6-14. [百度学术]
ZHANG H Y, CHENG Y, ZHAO Y M, et al. Study on Improving Water and Oil Resistance of Pulp Molding Packaging Materials with Acrylate Copolymers[J]. China Pulp & Paper, 2022, 41(4): 6-14. [百度学术]
Su Xiuxia, Zhang Yi, Zhao Dongdong, et al. Synthesis and characterization of carboxylate waterborne cellulose emulsion based on cellulose acetate[J]. Cellulose, 2017, 24(5): 2049-2057. [百度学术]
Zheng Xumin, Cai Zhengchun, Lyu Zhengwei, et al. Synthesis of Si-containing macro-RAFT agent for the water-borne polyacrylate polyurethane with anti-graffiti coating applications[J]. Materials Today Communications, DOI:10.1016/j.mtcomm.2020.101590. [百度学术]
Shen Jing, Fatehi Pedram, Ni Yonghao, et al. Biopolymers for surface engineering of paper-based products [J]. Cellulose, 2014, 21(5): 3145-3160. [百度学术]
Chi Kai, Wang Hui, Jeffrey M. Catchmark, Sustainable starch-based barrier coatings for packaging applications[J]. Food Hydrocolloids, DOI:10.1016/j.foodhyd.2020.105696. [百度学术]
Li Shaoxiang, Wang Jiaping, Qu Wenjuan, et al. Green synthesis and properties of an epoxy-modified oxidized starch-grafted styrene-acrylate emulsion[J]. European Polymer Journal, DOI:10.1016/j.eurpolymj.2019.109412. CPP [百度学术]