摘要
低共熔溶剂(Deep Eutectic Solvents,DESs)由于具有熔点低、溶解性好、制备成本低、绿色无毒、可生物降解和电化学窗口宽等特性而被视为新型绿色溶剂,在木质纤维生物质预处理领域展现出广阔的应用前景。本文综述了DESs在预处理木质纤维生物质、制备纳米纤维素、高效提取分离木质素与半纤维素领域的研究进展,并指出了DESs在目前研究发展中存在的不足及其未来的研究方向,以期为进一步研究提供理论依据。
在过去20年里,随着环境污染问题日益严重,人们的环保意识逐渐增强,加速推动了绿色化学的兴
DESs是由季铵盐、季磷盐等氢键受体(Hydrogen Bonding Acceptor,HBA)与氢键供体(Hydrogen Bond Donor,HBD)按照一定的物质的量比通过氢键作用、范德华力或静电作用相互结合在一起的熔融盐,其在室温或接近室温条件下呈流体形态。DESs因与ILs具有许多相同的物化性质而被视为类ILs绿色溶

图1 DESs在各领域的出版文章数量
Fig. 1 The number of articles published by DESs in various fields
注 图中数据源于Web of Science。

图2 每年发表的DESs文章数
Fig. 2 The number of DESs articles published per year
注 图中数据源于Web of Science。
木质纤维生物质主要由纤维素(30%~50%)、半纤维素(20%~30%)和木质素(15%~30%)组成,是地球上最丰富的生物质资源,是生物质精炼的理想原
木质纤维生物质的细胞壁结构复杂且致密,使其难以被溶解和利用,因此,预处理成为有效利用木质纤维生物质的关
采用不同处理方式辅助DESs预处理木质纤维生物质可提高其预处理效果,相关研究成果已被大量报道。路易斯酸是酸催化反应过程中常用的催化剂,其因与DESs具有协同效应而被应用于木质纤维生物质预处理领域。Loow等

图3 DESs+CuCl2预处理油棕榈叶促进半纤维素水
Fig. 3 DESs+CuCl2 pretreated oil palm fronds improving hydrolysis of hemicellulose
微波预处理作为一种生物质炼制的热处理方法,具有反应时间短、溶剂用量少、副反应少、能量效率高和无复杂参数变化等优
超声预处理主要是利用超声波的空化作用、机械效应和热效应等加速物质的释放、扩散和溶解。因此,超声辅助预处理可增强DESs对目标化合物的提取效果。Bosiljkov等
纤维素是木质纤维生物质中含量最多的成分。纳米纤维素是以天然纤维素为原料制备的一种纳米级的纤维素,其强度高、热稳定性好、比表面积大且富含羟基基团,在许多领域中展现出巨大的应用价

图4 利用FeCl3·6H2O催化DESs反应制备CNC流程
Fig. 4 Schematic diagram of preparation of CNC by DESs reaction catalyzed by FeCl3·6H2
目前,主要以带氨基的尿素、氨基磺酸、盐酸胍等盐类作为HBD制备纤维素纳米纤丝(Cellulose Nanofibrils,CNF),这类DESs体系对纤维素的破坏程度较低,可有效提高CNF的理化性质稳定性。Li等

图5 尿素基DES制备CN
Fig. 5 Preparation of CNF from urea-based DE
木质素作为木质纤维生物质的3大主要成分之一,是由3种苯丙烷单元通过醚键和碳碳键相互连接形成的具有三维网状结构的天然高分子。木质素广泛存在于维管植物中,尤其是木本植物,在细胞壁中与纤维素和半纤维素存在较强的相互作
随着研究工作不断深入,研究人员还对DESs脱除木质素的机理进行了探究。Hou等

图6 DESs预处理稻草流程
Fig. 6 Flow chart of DESs pre-treated rice stra
半纤维素由几种不同类型的单糖构成,具有主链和支链,是由多种复合聚糖构成的不均一聚糖的总称。半纤维素组成较为复杂,研究中常以聚木糖作为模型化合物对其溶解性能进行测试与表征,DESs溶解半纤维素的研究相对较少。Morais等
DESs可应用于诸多领域,被认为是21世纪最具发展潜力的绿色溶剂。DESs应用于木质纤维生物质预处理领域的潜力巨大,通过高效提取分离木质素与半纤维素,得到高纯度的木质素与大量的半纤维素产物,同时提高了纤维素的可及性,从而达到更高的酶解糖化效率,对实现木质纤维生物质全组分高值化利用具有重要意义,且DESs有望实现纳米纤维素的产业化生产,进一步扩大经济效益。近几年,有关DESs的研究报道大幅增加,DESs的研究发展迅速,但还存在许多局限,是未来需要重点攻克的难题。
5.1 研究工作涉及的DESs类型很少,现有研究集中在ChCl基DESs上;有关DESs的理化性质的研究也很少,源自不同文献的数据差异较大,还没有系统地研究HBA和HBD类型及其物质的量比对溶剂性质的影响。
5.2 DESs极性、pH值、黏度等理化性质与其在处理纤维素和木质素过程中所产生的作用机理尚未完全明确。
5.3 DESs分离木质纤维生物质组分的研究尚处于初步阶段,关于半纤维素在DESs中的解离机制的研究很少,有关其溶解性能的报道也存在分歧。
5.4 有关DESs回收利用的次数和方式及回收利用后溶剂的性质变化等方面的研究不够充分,缺乏系统性。
5.5 DESs的生产规模较小,难以实现大规模工业化生产。
参考文献
KHANDELWAL S, TAILOR Y K, KUMAR M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations[J]. Journal of Molecular Liquids, 2016, 215: 345-386. [百度学术]
SHELDON R A. Green solvents for sustainable organic synthesis: state of the art[J]. Green Chemistry, 2005, 7(5): 267-278. [百度学术]
SHAUGHNESSY K H. Comprehensive organic reactions in aqueous media[J]. Angewandte Chemie-International Edition, 2008, 47(11): 1988-1989. [百度学术]
HYDE J R, LICENCE P, CARTER D, et al. Continuous catalytic reactions in supercritical fluids[J]. Applied Catalysis A General, 2001, 222(1): 119-131. [百度学术]
ADLARD E R. Francesca m. kerton and ray marriott: alternative solvents for green chemistry[J]. Chromatographia, 2014, 77(17-18): 1249-1250. [百度学术]
WAZEER I, HAYYAN M, HADJ-KALI M K. Deep eutectic solvents: designer fluids for chemical processes[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(4): 945-958. [百度学术]
TOLEDO H A A C, MAXIMO G J, COSTA M C, et al. Applications of ionic liquids in the food and bioproducts industries[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5347-5369. [百度学术]
BRENNECKE J F, MAGINN E J. Ionic liquids: Innovative fluids for chemical processing[J]. AIChE Journal, 2001, 47(11): 2384-2389. [百度学术]
LIANG W, ZHANG S, LI H, et al. Oxidative desulfurization of simulated gasoline catalyzed by acetic acid-based ionic liquids at room temperature[J]. Fuel Processing Technology, 2013, 109: 27-31. [百度学术]
LISSNER E, DE SOUZA W F, FERRERA B, et al. Oxidative desulfurization of fuels with task-specific ionic liquids[J]. ChemSusChem, 2009, 2(10): 962-964. [百度学术]
MAO S, HUA B, WANG N, et al. 11α hydroxylation of 16α, 17-epoxyprogesterone in biphasic ionic liquid/water system by Aspergillus ochraceus[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(2): 287-292. [百度学术]
CORDERÍ S, GONZÁLEZ B, CALVAR N, et al. Ionic liquids as solvents to separate the azeotropic mixture hexane/ethanol[J]. Fluid Phase Equilibria, 2013, 337: 11-17. [百度学术]
PLECHKOVA N V, SEDDON K R. Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. [百度学术]
BAGH F S G, HADJ-KALI M K O, MJALLI F S, et al. Solubility of sodium chloride in phosphonium-based deep eutectic solvents[J]. Journal of Molecular Liquids, 2014, 199: 344-351. [百度学术]
GHAREH BAGH F S, MJALLI F S, HASHIM M A, et al. Solubility of sodium salts in ammonium-based deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2013, 58(8): 2154-2162. [百度学术]
PHAM T P T, CHO C W, YUN Y S. Environmental fate and toxicity of ionic liquids: A review[J]. Water Research, 2010, 44(2): 352-372. [百度学术]
BICZAK R, PAWŁOWSKA B, BAŁCZEWSKI P, et al. The role of the anion in the toxicity of imidazolium ionic liquids[J]. Journal of Hazardous Materials, 2014, 274: 181-190. [百度学术]
PADUSZYŃSKI K, DOMAŃSKA U. Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network[J]. Journal of Chemical Information and Modeling, 2014, 54(5): 1311-1324. [百度学术]
POLLET P, DAVEY E A, UREÑA-BENAVIDES E E, et al. Solvents for sustainable chemical processes[J]. Green Chemistry, 2014, 16(3): 1034-1055. [百度学术]
ZHANG Q, VIGIER K D O, ROYER S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chemical Society Reviews, 2012, 41(21): 7108-7146. [百度学术]
SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082. [百度学术]
KHANDELWAL S, TAILOR Y K, KUMAR M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations[J]. Journal of Molecular Liquids,2016, 215: 345-386. [百度学术]
JUNEIDI I, HAYYAN M, ALI O M. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish[J]. Environmental Science and Pollution Research, 2016, 23(8): 7648-7659. [百度学术]
MBOUS Y P, HAYYAN M, HAYYAN A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges[J]. Biotechnology Advances, 2017, 35(2): 105-134. [百度学术]
HALDAR D, PURKAIT M K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements[J]. Chemosphere, doi: 10.1016/jchemosphere.2020.128523. [百度学术]
SAXENA R C, ADHIKARI D K, GOYAL H B. Biomass-based energy fuel through biochemical routes: A review[J]. Renewable and Sustainable Energy Reviews,2009, 13(1): 167-178. [百度学术]
LI C, ZHAO X, WANG A, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. [百度学术]
CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007, 107(6): 2411-2502. [百度学术]
HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. [百度学术]
VIGIER K D O, CHATEL G, JÉRÔME F. Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations[J]. ChemCatChem, 2015, 7(8): 1250-1260. [百度学术]
刘苏玲, 张莉莉, 王志国. 低共熔溶剂在木质纤维素预处理中的应用[J]. 中国造纸学报, 2021, 36(1): 71-79. [百度学术]
LIU S L, ZHANG L L, WANG Z G. Application of Deep Eutectic Solvent in Pretreatment of Lignocellulose[J]. Transactions of China Pulp and Paper, 2021, 36(1): 71-79. [百度学术]
汪心娉, 余 璟, 朱瑞琦, 等. 低共熔溶剂选择性溶解木质纤维原料的研究进展[J]. 中国造纸学报, 2021, 36(2): 79-86. [百度学术]
WANG X P, YU J, ZHU R Q, et al. Research Progress on Selective Dissolution of Lignocellulosic Materials in Deep Eutectic Solvents[J]. Transactions of China Pulp and Paper, 2021, 36(2): 79-86. [百度学术]
TANG X, ZUO M, LI Z, et al. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents[J]. ChemSusChem, 2017, 10(13): 2696-2706. [百度学术]
WANG W, LEE D J. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review[J]. Bioresoure Technology, doi: 10.1016/j.biortech.2021.125587. [百度学术]
LIN W, XING S, JIN Y, et al. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues[J]. Bioresource Technology,doi: 10.1016/j.biortech.2020.123163. [百度学术]
PROCENTESE A, JOHNSON E, ORR V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology,2015, 192: 31-36. [百度学术]
ZHANG C W, XIA S Q, MA P S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents[J]. Bioresource Technology, 2016, 219: 1-5. [百度学术]
WANG Y, MENG X, JEONG K, et al. Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12542-12553. [百度学术]
XU G C, DING J C, HAN R Z, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016, 203: 364-369. [百度学术]
LOOW Y L, WU T Y, YANG G H, et al. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery[J]. Bioresource Technology, 2018, 249: 818-825. [百度学术]
HUANG C, ZHAN Y, CHENG J, et al. Facilitating enzymatic hydrolysis with a novel guaiacol-based deep eutectic solvent pretreatment[J]. Bioresource Technology, doi: 10.1016/j.biortech.2021.124696. [百度学术]
BUNDHOO Z M A. Microwave-assisted conversion of biomass and waste materials to biofuels[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 1149-1177. [百度学术]
ZAKER A, CHEN Z, WANG X, et al. Microwave-assisted pyrolysis of sewage sludge: A review[J]. Fuel Processing Technology, 2019, 187: 84-104. [百度学术]
LIU Y Z, CHEN W S, XIA Q Q, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10(8): 1692-1700. [百度学术]
CHEN Z, WAN C. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment[J]. Bioresource Technology, 2018, 250: 532-537. [百度学术]
BOSILJKOV T, DUJMIĆ F, BUBALO M C, et al. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins[J]. Food and Bioproducts Processing, 2017, 102: 195-203. [百度学术]
ONG V Z, WU T Y, LEE C B T L, et al. Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds[J]. Ultrasonics Sonochemistry, doi: 10.1016/j.ultsonch.2019.05.015. [百度学术]
LEE K M, HONG J Y, TEY W Y. Combination of ultrasonication and deep eutectic solvent in pretreatment of lignocellulosic biomass for enhanced enzymatic saccharification[J]. Cellulose, 2021, 28(3): 1513-1526. [百度学术]
周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7): 1657-1666. [百度学术]
ZHOU K K, TANG Y L, LU L X, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1657-1666. [百度学术]
李利芬, 吴志刚, 梁坚坤, 等. 低共熔溶剂在木质纤维类生物质研究中的应用[J]. 林业工程学报, 2020, 5(4): 20-28. [百度学术]
LI L F, WU Z G, LIANG J K, et al. Application of deep eutectic solvents in lignocellulosic biomass processing [J]. Journal of Forestry Engineering, 2020, 5(4): 20-28. [百度学术]
YANG X, XIE H, DU H, et al. Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7200-7208. [百度学术]
SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production[J]. Biomacromolecules, 2016, 17(9): 3025-3032. [百度学术]
LIU Y, GUO B, XIA Q, et al. Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7623-7631. [百度学术]
LI P, SIRVIÖ J A, HAAPALA A, et al. Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2846-2855. [百度学术]
SIRVIÖ J A, VISANKO M, LIIMATAINEN H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose[J]. Green Chemistry, 2015, 17(6): 3401-3406. [百度学术]
YU W, WANG C, YI Y, et al. Direct pretreatment of raw ramie fibers using an acidic deep eutectic solvent to produce cellulose nanofibrils in high purity[J]. Cellulose, 2021, 28(1): 175-188. [百度学术]
LI M F, ZHANG Q T, CHEN C Z, et al. Lignin Interaction with Cellulose During Enzymatic Hydrolysis[J]. Paper and Biomaterials, 2019, 4(4): 15-30. [百度学术]
金永灿, 谷 峰. 木质素清洁高效分离研究进展[J]. 中国造纸, 2019, 38(6): 65-72. [百度学术]
JIN Y C, GU F. Research Progress in Clean and Efficient Separation of Lignin[J]. China Pulp & Paper, 2019, 38(6): 65-72. [百度学术]
FRANCISCO M, VAN DEN BRUINHORST A , KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14(8): 2153-2157. [百度学术]
CARLOS ALVAREZ-VASCO, MA R, QUINTERO M, et al. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization[J]. Green Chemistry, 2016, 18(19): 5133-5141. [百度学术]
KUMAR A K, PARIKH B S, PRAVAKAR M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science and Pollution Research, 2016, 23(10): 9265-9275. [百度学术]
WANG Z K, HONG S, WEN J, et al. Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin[J]. ACS Sustainable Chemistry & Engineering, 2019, 8(2): 1050-1057. [百度学术]
HOU X D, LIN K P, LI A L, et al. Effect of constituents molar ratios of deep eutectic solvents on rice straw fractionation efficiency and the micro-mechanism investigation[J]. Industrial Crops and Products, 2018, 120: 322-329. [百度学术]
LOOW Y L, NEW E K, YANG G H, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24(9): 3591-3618. [百度学术]
XIA Q, LIU Y, MENG J, et al. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass[J]. Green Chemistry, 2018, 20(12): 2711-2721. [百度学术]
MORAIS E S, MENDONCA P V, COELHO J F J, et al. Deep eutectic solvent aqueous solutions as efficient media for the solubilization of hardwood xylans[J]. ChemSusChem, 2018, 11(4): 753-762. [百度学术]
YU H, XUE Z, LAN X, et al. Highly efficient dissolution of xylan in ionic liquid-based deep eutectic solvents[J]. Cellulose, 2020, 27(11): 6175-6188. [百度学术]
MALAEKE H, HOUSAINDOKHT M R, MONHEMI H, et al. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification[J]. Journal of Molecular Liquids, 2018, 263: 193-199. [百度学术]
LYNAM J G, KUMAR N, WONG M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684-689. CPP [百度学术]