摘要
本文综述了可降解阻隔涂层在纸基食品包装材料中的应用,系统地介绍了涂层的阻隔机理和涂料流变性,基底材料特性对涂层结构和材料阻隔性能的影响;并对纳米纤维素、聚乙烯醇(PVA)、聚羟基丁酸酯(PHB)、聚乳酸(PLA)、淀粉5种常见的可降解聚合物涂层材料的突出优势、不足之处和改性方法进行了对比和总结,对其应用价值进行了展望。
日前,随着“限塑令”的实施和人们环保意识的不断提高,食品包装行业开始大量使用纸和纸板等纸基材料来代替合成聚合
目前,提高纸基包装阻隔性能的方法主要有:①浸涂油、蜡、树脂、乳胶
涂层是由某种材料涂覆在基底上,并能与基底表面形成良好附着力的连续的、封闭的薄
气体分子在涂层中的渗透主要包括4个过程,如

图1 气体分子在涂层中的渗透过
Fig. 1 The permeation process of gas molecules in the coatin
包装材料必须具备较高的抗拒液体渗透的能力,而纤维自身的亲水性和毛细管作用使得纸张材料吸水性较强,纤维间的多孔结构也加剧了油和油脂的渗透。利用涂层技术使纸张获得阻油阻水性能,一方面是基于物理的原理,通过在纸张表面形成一层致密的薄膜,避免油和水与纸张孔隙的直接接触,通过膜层的完整性来达到防渗透性能;另一方面则是通过化学功能基团降低纸张的表面能,防止油和水的润湿从而阻止油和水的渗透。
各类常用食品包装材料对水蒸气、氧气的阻隔要求见
涂层之所以能够赋予纸基材料良好的阻隔性能,很大程度上是通过改善纸基表面缺陷(如孔隙)并在其上形成一层连续的、平整的、封闭的薄膜来实
涂料在材料表面涂布成膜后的阻隔性能与其结构密切相关,而涂层的结构又取决于涂料的流变特性。涂料的流变性能直接影响着涂料的黏度、流平性及其在纸张表面的成膜情况,从而影响涂层的微观粗糙度和涂层间的附着力,进一步影响着涂布纸的阻隔性能。
吴新磊等
Kumar等
通过涂布的方法使纸张获得阻隔性能,就必须使涂布液在纸基表面较好的成膜。因此,底纸的孔隙率、平滑度、吸水等性能十分重要,同时底纸自身的透气性对涂布纸获得优异的阻隔性能也有很大影响。
Kumar等
Tyagi等
传统方法制备具有阻隔性的纸基材料是在表面涂覆聚乙烯(PE)、聚丙烯(PP)、乙烯-乙烯醇共聚物(EVOH)、聚对苯二甲酸乙二醇酯(PET)、聚偏二氯乙烯(PVDC)等热塑性聚合物,它们良好的阻隔性可有利地与纸张刚度相结合,但也会使纸基材料失去其降解性和可循环性。为满足环境友好型产品的需要,目前的研究主要集中于可降解聚合物材料的使用。
纳米纤维素是一种环境友好型的天然高分子材料,其尺寸和性能随种类的不同存在很大差异。目前常用于阻隔材料使用的纳米纤维素包括微纤化纤维素(MFC,microfibrillated cellulose)、纳米纤化纤维素NFC(nanofibrillated cellulose)、纤维素纳米晶体(CNC,cellulose nanocrystals),其中NFC 和MFC也可称为纤维素纳米纤丝(CNF,cellulose nanofibril)。CNC是一种非常微小的晶体纳米颗粒,通过酸性或氧化水解等化学过程获得,一般直径为3~50 nm,长度为100~250 nm,结晶度大于90%,较高的结晶区可有效阻碍气体分子的渗透。相比于CNC,MFC/NFC则是通过机械剪切作用制备的,既包含结晶区又包含无定形区。MFC/NFC的长径比较高,一般直径3~100 nm,长度>1 μm,在湿状态下往往更有弹性,在交联结构中具有形成高密度、低孔隙率和高空气渗透阻力的潜
纳米纤维素优异的水分散性使其能单独或复合作为水性涂层而使
然而鉴于纳米纤维素本身的亲水特性,其与水和水蒸气阻隔性能并不理想,一般是通过适当的疏水改性得到改善。郑闪闪等
纳米纤维素材料在阻隔方面具有巨大的应用潜力,为了顺利推进其在包装材料上的使用,还需要实现其产业化生产和改性方法的创新。
PVA是一种可降解的合成高分子聚合物,具备理想的成膜性和黏结性,其分子内和分子间存在大量强极性羟基,使PVA分子链堆积规整,结晶度高,具有优异阻隔性
为了提高PVA的耐湿性能,特别是增强其在高相对湿度下的气体阻隔性,可采用将PVA与无机材料复合和化学交联的方法。赵文
PVA阻隔性能优异,价格相对便宜,加工过程绿色环保,不会释放有害物质,具有较好的市场发展前景。但PVA仍属于亲水性物质,其高吸湿率限制了其阻隔能力的提高。且目前分离出的PVA降解微生物种类仍然较少,降解效率相对较
PHB是由甘蔗等可再生资源通过细菌发酵合成的,可被多种微生物完全降解成无害的分子,是一种可生物降解的热塑性聚
PHB在食品包装方面一个重要的特性是其水蒸气渗透性低,接近于低密度聚乙
虽然目前对PHB在包装工业中的应用有比较广泛的研究,但PHB成本较高,其作为纸张涂料的相关研究仍然非常有
PLA是一种热塑性脂肪族聚酯,由乳酸合成,乳酸来源于玉米、甜菜等可再生的植物资源,因此聚乳酸具有良好的生物可降解性和生物相容
在改善PLA阻隔性能方面,可以使用的方法很多,较为简单的是通过添加其他材料与PLA进行共混。Song等
虽然PLA通常被认为是一种生物可降解材料,但在实际模拟海洋和土壤条件下,PLA是难降解的,而且只有在高温下才可堆肥处理,因此其可降解性还有待进一步考
淀粉在自然界中储量丰富,是一种降解性好的可再生资源,常应用于造纸工业作为纸张涂料或施胶剂使用。天然淀粉具有较好的黏结性和成膜性,但因其半晶体性质,淀粉膜的力学性能较差,并且自身对水比较敏
常用于淀粉增塑的有甘
虽然与其他天然高分子聚合物相比,淀粉成本低,来源广,使用方便,用于阻隔涂布的研究也不少。但淀粉属于亲水性物质,水蒸气阻隔效果并不很理想。与此同时,淀粉力学性能差、容易滋生细菌也是阻碍其作为食品包装阻隔涂层应用的重要原因。
将纳米纤维素、PVA、PHB、PLA、淀粉这5种可降解材料的阻隔等性能进行对比,如
总体上,这5种可降解材料各有优势,也都存在不足,单一材料难以满足所有性能指标,实际使用时会通过化学、物理改性或与其他材料共混来达到最佳效果,并应用于特定领域。
具体来讲,纳米纤维素具有较好的氧气阻隔性能,与纸基材料的界面相容性好,完全可降解,但极易受到环境湿度的影响,鉴于其生产成本高、储存和运输困难等问题,目前商业化程度较低;PVA可作为水性涂料使用,涂布加工十分方便,成膜性能优异,氧气阻隔性和耐油性极佳,但受其高亲水性的限制,一般需要通过化学交联或与无机纳米材料复合后使用;PHB和PLA在一次性包装材料的工业生产中已有应用,主要是通过挤压涂层的形式进行加工,二者的水蒸气阻隔性能突出,可与石油基塑料相媲美,但氧气阻隔性能稍差,高结晶度使得PHB脆性大,而PLA则韧性较差,一些纳米级填料的加入可有效改善这一问题;相比其他材料,淀粉的阻隔性能差得多,力学性能也不足,但淀粉作为一种天然生物聚合物,来源广、成本低、可再生又可完全降解,具备较好的成膜性和耐油性,经过塑化改性,性能可得到大幅提升,因此在食品包装领域有一定应用潜力。
纳米纤维素、聚乙烯醇(PVA)、聚羟基丁酸酯(PHB)、聚乳酸(PLA)、淀粉等材料基于可再生资源,具有许多优势,如降解性、阻隔性、良好的成膜性、无毒性和生物相容性。在纸基表面涂布这些可降解聚合物涂层可基本满足食品包装阻油、阻氧的性能要求。但因纸张本身的性质,即使使用改性后的涂料进行表面涂布,其水蒸气阻隔性也较差。
目前涂布型纸基包装主要还是用于含水量较低的食品包装领域,研发出具有高水汽阻隔性能的可降解涂料将成为未来工作的重点和难点。
参考文献
BIDEAU B, LORANGER E, DANEAULT C. Nanocellulose-polypyrrole-coated paperboard for food packaging application[J]. Progress in Organic Coatings, 2018, 123: 128-133. [百度学术]
刘玉莎. 纸张阻隔性涂布及其阻隔性能研究[D]. 广州: 华南理工大学, 2012. [百度学术]
LIU Y S. Study on the Barrier Coating of Paper and Its Barrier Performance [D]. Guangzhou: South China University of Technology, 2012. [百度学术]
KESTER J J, FENNEMA O. Resistance of lipid films to water vapor transmission[J]. Journal of the American Oil Chemists' Society, 1989, 66(8): 1139-1146. [百度学术]
HIRVIKORPI T, VAEHAE-NISSI M, HARLIN A, et al. Comparison of some coating techniques to fabricate barrier layers on packaging materials[J]. Thin Solid Films, 2010, 518(19): 5463-5466. [百度学术]
董文丽. 阻隔性包装材料及生产技术的应用发展[J]. 包装工程, 2009, 30(10): 117-120. [百度学术]
DONG W L. Application and development of barrier packaging materials and production technology[J]. Packaging Engineering, 2009, 30(10): 117-120. [百度学术]
KHWALDIA K, DESOBRY S, ARAB-TEHRANY E. Biopolymer Coatings on Paper Packaging Materials[J]. Comprehensive Reviews in Food Science & Food Safety, 2010, 9(1): 82-91. [百度学术]
徐世豪, 徐海萍, 王静荣, 等. 可降解高分子材料研究进展及在快递绿色包装领域的应用[J]. 合成材料老化与应用, 2020, 49(3): 117-120+124. [百度学术]
XU S H, XU H P, WANG J R, et al. Synthetic Materials Aging and Application[J]. Synthetic Materials Aging and Application, 2020, 49(3): 117-120+124. [百度学术]
HUBBE M A, ANA F, PREETI T, et al. Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review[J]. Bioresources, 2017, 12(1): 2143-2233. [百度学术]
FARRIS S, PIERGIOVANNI L. Emerging coating technologies for food and beverage packaging materials[J]. Emerging Food Packaging Technologies, 2012: 274-302. [百度学术]
吴光继. 论食品包装的阻隔性[J]. 包装世界, 2010 (5): 18-20. [百度学术]
WU G J. On the barrier of food packaging[J]. Packaging World, 2010 (5): 18-20. [百度学术]
LAGARON J M, CATAL R, GAVARA R. Structural characteristics defining high barrier polymeric materials. Mater Sci Technol[J]. Materials Science & Technology, 2003, 20(1): 1-7. [百度学术]
张宝军. 淀粉复合物的制备及其在纸张阻隔涂布中的应用[D]. 广州:华南理工大学, 2016. [百度学术]
ZHANG B J. Preparation of starch composite and its application in paper barrier coating [D]. Guangzhou: South China University of Technology, 2016. [百度学术]
Soarnol. Gas Barriers: An Introduction Basic Reference 4[DB/OL].(2005-03-03).http://www.soarnol.com/eng/solution/solution 050303.html. [百度学术]
丁运生, 张志成, 史铁钧. 阻隔性高分子材料研究进展[J]. 功能高分子学报, 2001, 14(3): 360-364. [百度学术]
DING Y S, ZHANG Z C, SHI T J. Research progress of barrier polymer materials [J]. Journal of Functional Polymer Science, 2001, 14(3): 360-364. [百度学术]
吴新磊, 景 宜. 壳聚糖-蒙脱土与壳聚糖-高岭土纳米复合涂料流变性及其对纸张阻隔性能的影响[J]. 中国造纸学报, 2016, 31(2): 1-6. [百度学术]
WU X L, JING Y. Rheological properties of chitosan-montmorillonite and chitosan-kaolin nanocomposite coatings and their effect on the barrier properties of paper [J]. Transactions of China Pulp and Paper, 2016, 31(2): 1-6. [百度学术]
KUMAR V, KENTT E, ANDERSSON P, et al. Microfibrillated Cellulose Based Barrier Coatings for Abrasive Paper Products[J]. Coatings, 2020, 10(11): 1108. [百度学术]
KUMAR V, KOPPOLU V R, BOUSFIELD D, et al. Substrate role in coating of microfibrillated cellulose suspensions[J]. Cellulose, 2017, 24(3): 1-14. [百度学术]
TYAGI P, HUBBE M A, LUCIA L, et al. High performance nanocellulose-based composite coatings for oil and grease resistance[J]. Cellulose, 2018, 25(6): 3377-3391. [百度学术]
FOTIE G, LIMBO S, PIERGIOVANNI L. Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges[J]. Nanomaterials, 2020, 10(9): 1726. [百度学术]
DUFRESNE A. Preparation and Properties of Cellulose Nanomaterials[J]. Paper and Biomaterials, 2020, 5(3): 1-13. [百度学术]
FERRER A, PAL L, HUBBE M. Nanocellulose in packaging: Advances in barrier layer technologies[J]. Industrial Crops & Products, 2017, 95: 574-582. [百度学术]
刘 仁, 鲁 鹏, 吴 敏, 等. 纳米纤维素在气体阻隔包装材料中的应用进展[J]. 包装工程, 2019, 40(7): 51-59. [百度学术]
LIU R, LU P, WU M, et al. Advances in application of nanocellulose in gas barrier packaging materials[J]. Packaging Engineering, 2019, 40(7): 51-59. [百度学术]
AULIN C, GLLSTEDT M, LINDSTRM T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings[J]. Cellulose, 2010, 17(3): 559-574. [百度学术]
ALVES L, FERRAZ E, JAF G. Composites of nanofibrillated cellulose with clay minerals: A review[J]. Advances in Colloid and Interface Science, 2019, 272: 101994. [百度学术]
OSTERBERG M, VARTIAINEN J, LUCENIUS J, et al. A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4640-4647. [百度学术]
KISONEN V, PRAKOBNA K, XU C, et al. Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging[J]. Journal of Materials Science, 2015, 50(8): 3189-3199. [百度学术]
郑闪闪, 杭建忠, 孙小英, 等. 苯基三甲氧基硅烷改性纳米纤维素纸基阻隔涂层的制备及性能[J].高分子材料科学与工程, 2020, 36(3): 120-125. [百度学术]
ZHENG S S, HANG J Z, SUN X Y, et al. Preparation and Properties of Phenyl Trimethoxy Silane Modified Nanocellulose Paper-based Barrier Coating [J]. Polymer Materials Science and Engineering, 2020, 36(3): 120-125. [百度学术]
MIRMEHDI S, HEIN P, DLSCI G, et al. Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: Effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers[J]. Food Packaging & Shelf Life, 2017, 15: 87-94. [百度学术]
Song Z, Xiao H, Zhao Y. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper[J]. Carbohydrate Polymers, 2014, 111: 442-448. [百度学术]
YAN N, CAPEZZUTO F, BUONOCORE G G, et al. Gas-Barrier Hybrid Coatings by the Assembly of Novel Poly(vinyl alcohol) and Reduced Graphene Oxide Layers through Cross-Linking with Zirconium Adducts[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22678-22685. [百度学术]
刘 耘, 李 婷, 东为富. 高阻隔聚乙烯醇涂布膜的研究进展[J]. 塑料包装, 2018, 28(2): 12-19+55. [百度学术]
LIU Y, LI T, DONG W F. Research progress of high barrier polyvinyl alcohol coating film [J]. Plastic Packaging, 2018, 28(2): 12-19+55. [百度学术]
TSURKO E S, FEICHT P, HABEL C, et al. Can High Oxygen and Water Vapor Barrier Nanocomposite Coatings be Obtained with a Waterborne Formulation?[J]. Journal of Membrane Science, 2017, 540: 212-218. [百度学术]
GRUNLAN J C, GRIGORIAN A, HAMILTON C B, et al. Effect of clay concentration on the oxygen permeability and optical properties of a modified poly(vinyl alcohol)[J]. Journal of Applied Polymer Science, 2010, 93(3): 1102-1109. [百度学术]
赵文迪. 高阻隔PVA涂布液的研制及其在纸包装材料上的应用研究[D]. 株洲: 湖南工业大学, 2012. [百度学术]
ZHAO W D. Development of High Barrier PVA Coating Fluid and Its Application in Paper Packaging Materials [D]. Zhuzhou: Hunan University of Technology, 2012. [百度学术]
杜艳芬, 刘金刚, 王加福. PVA/高岭土环保阻隔涂布纸的研究[C]//中国造纸学会第十七届学术年会论文集. 西安: 中国造纸学会, 2016: 209-214. [百度学术]
DU Y F, LIU J G, WANG J F. Study on PVA/ kaolin environment-friendly barrier coated paper [C]//Proceedings of the 17th Annual Conference of China Technical Association of Paper Industry. Xi’an: China Technical Association of Paper Industry, 2016:209-214. [百度学术]
KIM J M, MIN H L, KO J A, et al. Influence of Food with High Moisture Content on Oxygen Barrier Property of Polyvinyl Alcohol (PVA)/Vermiculite Nanocomposite Coated Multilayer Packaging Film[J]. Journal of Food Science, 2018, 83(2): 349-357. [百度学术]
TSOU C H , ZHAO L, GAO C, et al. Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier performance[J]. Nanotechnology, doi: 10.1088/1361-6528/ab9786. [百度学术]
崔青青. 聚乙烯醇/层状纳米颗粒高阻隔复合涂料的制备和表征[D]. 福州:福建师范大学, 2018. [百度学术]
CUI Q Q. Preparation and characterization of polyvinyl alcohol/layered nanoparticle high barrier composite coatings [D]. Fuzhou: Fujian Normal University, 2018. [百度学术]
SPIRIDON I, POPESCU M C, BODÂRLĂU R, et al. Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch[J]. Polymer Degradation and Stability, 2008, 93(10): 1884-1890. [百度学术]
SHEN Z, KWON S, OH K, et al. Facile fabrication of hydrophobic cellulosic paper with good barrier properties via PVA/AKD dispersion coating[J]. Nordic Pulp and Paper Research Journal, 2019, 34(4): 516-524. [百度学术]
邓怡玲. 聚乙烯醇生物降解的条件优化及其过程机理分析[D]. 广州: 华南理工大学, 2020. [百度学术]
DENG Y L. Optimization of conditions for the biodegradation of polyvinyl alcohol and analysis of process mechanism [D]. Guangzhou: South China University of Technology, 2020. [百度学术]
IRENE S, LILIANA M, VIVIANA C, et al. Effect of Cellulose Nanocrystals and Bacterial Cellulose on Disintegrability in Composting Conditions of Plasticized PHB Nanocomposites[J]. Polymers, doi: 10.3390/polym9110561. [百度学术]
ANA M D-P , ANGEL L D-V .Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties[J]. International Journal of Molecular Sciences, 2014, 15(6): 10950-10973. [百度学术]
SUDESH K, ABE H, DOI Y. Synthesis , structure and properties of polyhydroxyalkanoates: biological polyesters[J]. 2000, 25(10): 1503-1555. [百度学术]
BOURBONNAIS R, MARCHESSAULT R H. Application of Polyhydroxyalkan- oate Granules for Sizing of Paper[J]. Biomacromolecules, 2010, 11(4): 989-993. [百度学术]
CYRAS V P, COMMISSO M S, MAURI A N, et al. Biodegradable double-layer films based on biological resources: Polyhydroxybutyrate and cellulose[J]. Journal of Applied Polymer Science, 2010, 106(2): 749-756. [百度学术]
SEOANE I T, LUZI F, PUGLIA D, et al. Enhancement of paperboard performance as packaging material by layering with plasticized polyhydroxybuty -rate/nanocellulose coatings[J]. Journal of Applied Polymer Science, doi: 10.1002/app.46872. [百度学术]
RASTOGI V K, SAMYN P. Bio-Based Coatings for Paper Applications[J]. Coatings, 2015, 5(4): 887-930. [百度学术]
宋亚男. 聚乳酸基复合材料的性能与结构研究[D]. 大连: 大连理工大学, 2013. [百度学术]
SONG Y N. Study on Properties and Structure of Polylactic Acid Matrix Composites [D]. Dalian: Dalian University of Technology, 2013. [百度学术]
SDERGRD A, STOLT M. Properties of Lactic Acid Based Polymers and Their Correlation with Composition[J]. Progress in Polymer Science, 2002, 27(6): 1123-1163. [百度学术]
GARLOTTA D. A Literature Review of Poly(Lactic Acid)[J]. Journal of Polymers & the Environment, 2001, 9(2): 63-84. [百度学术]
AURAS R , HARTE B , SELKE S. An Overview of Polylactides as Packaging Materials[J]. Macromolecular Bioscience, 2004, 4(9): 835-864. [百度学术]
雷燕湘. 聚乳酸技术与市场现状及发展前景[J]. 当代石油石化, 2007, 15(1): 39-39. [百度学术]
LEI Y X. Technology, Market Status and Development Prospect of Polylactic Acid [J]. Contemporary Petroleum & Petrochemical, 2007, 15(1): 39-39. [百度学术]
KOPPOLU R, JOHANNA L, ABITBOL T, et al. Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11920-11927. [百度学术]
RHIM J W, MOHANTY A K, SINGH S P, et al. Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting[J]. Journal of Applied Polymer Science, 2010, 101(6): 3736-3742. [百度学术]
RHIM J W, MOHANTY K A, SINGH S P, et al. Preparation and Properties of Biodegradable Multilayer Films Based on Soy Protein Isolate and Poly(lactide) [J]. Industrial & Engineering Chemistry Research, 2006, 45(9): 3059-3066. [百度学术]
ZENKIEWICZ M, RICHERT J, ROZANSKI A. Effect of Blow Moulding Ratio on Barrier Properties of Polylactide Nanocomposite Films[J]. Polymer Testing, 2010, 29 (2): 251-257. [百度学术]
TRIFOL J, PLACKETT D, SILLARD C. et al. A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites[J]. Journal of Applied Polymer Science, doi:10.1002/app.43257. [百度学术]
GARRISON T F, MURAWSKI A, QUIRINO R L. Bio-Based Polymers with Potential for Biodegradability[J]. Polymers, doi:10.3390/polym8070262. [百度学术]
段瑞侠, 刘文涛, 陈金周, 等.包装用聚乳酸的改性研究进展[J]. 包装工程, 2019, 40(5): 109-116. [百度学术]
DUAN R X, LIU W T, CHEN J Z, et al. Research progress on modification of polylactic acid for packaging[J]. Packaging Engineering, 2019, 40(5): 109-116. [百度学术]
DAVIS G, SONG J H. Biodegradable packaging based on raw materials from crops and their impact on waste management[J]. Industrial Crops & Products, 2006, 23(2): 147-161. [百度学术]
MATSUI K N, LAROTONDA F D S, PAES S S, et al. Cassava bagasse-Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties[J]. Carbohydrate Polymers, 2004, 55(3): 237-243. [百度学术]
MALI S, GROSSMANN M VE, GARCÍA M A, et al. Barrier, mechanical and optical propertiesof plasticized yam starch films[J]. Carbohydrate Polymers, 2004, 56(2): 129-135. [百度学术]
GAUDIN S, LOURDIN D, FORSSELL P M, et al. Antiplasticisation and oxygen permeability of starch-sorbitol films [J]. Carbohydrate Polymers, 2000, 43(1): 33-37. [百度学术]
LAROTONDA F, MATSUI K N, SOBRAL P, et al. Hygroscopicity and water vapor permeability of Kraft paper impregnated with starch acetate[J]. Journal of Food Engineering, 2005, 71(4): 394-402. [百度学术]
LIN D, KUANG Y, CHEN G, et al. Enhancing moisture resistance of starch-coated paper by improving the film forming capability of starch film[J]. Industrial Crops & Products, 2017, 100: 12-18. [百度学术]
刘 群, 张玉苍. 改性淀粉基生物降解塑料的研究进展[J]. 化工进展, 2020, 39(8): 3124-3134. [百度学术]
LIU Q, ZHANG Y C. Research progress of modified starch based biodegradable plastics [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3124-3134. [百度学术]
PARK H M, LEE W K, PARK C Y, et al. Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites[J]. Journal of Materials Science, 2003, 38(5): 909-915. CPP [百度学术]