摘要
纤维素高值化利用是传统制浆造纸产业向生物质高效利用综合平台转型升级的关键。纤维素表面上的亲水羟基可通过配位作用和电荷效应促进晶体在其表面的成核生长,是负载无机纳米颗粒的优秀载体。氧化亚铜(Cu2O)是一种具有可见光催化活性、广谱杀菌性能的p型半导体,可应用在传感器、能量储存与转化、抗菌材料等领域。本文介绍了通过水热法、化学液相还原法、电化学沉积法在纤维素上负载Cu2O的研究进展,并总结了Cu2O-纤维素复合材料在光催化降解、抗菌材料和新型织物等领域中的应用,最后对Cu2O-纤维素复合材料的未来发展方向进行了展望。
纤维素是一种由D-脱水吡喃葡萄糖苷单元(AUG)通过β-1,4-苷键连接形成的线性聚合
氧化亚铜(Cu2O)是一种p型半导体,其禁带宽度为2.2 e
Cu2O的催化性能随着粒子直径的减小、比表面积的增大而增
目前已有许多研究者开展了在纤维素上负载Cu2O粒子的研究工作,并将制得的Cu2O-纤维素复合材料应用于光催化降解、医疗卫生领域,展现出巨大的应用价值。目前研究中出现的负载方法以液相还原法为主,纤维素纤维既可以作为固定Cu2O颗粒的载体,也可以作为还原剂和稳定剂,起到调控晶体形貌、防止Cu2O粒子团聚的作用,适用于Cu2O的原位合成。本文围绕Cu2O-纤维素复合材料近年来的研究进展,对其制备方法以及液相还原法负载的机理进行综述,并对目前这类复合材料的应用情况以及未来研究方向进行总结和展望。
Cu2O是铜的一价氧化物,其颜色随晶型、粒径和制备方式的不同而略有差别,一般为黄红色。Cu2O的化学性质活泼,既具有还原性也具有氧化性,在干燥条件下较稳定,但在潮湿空气中容易被氧化,生成黑色CuO,在酸性溶液中则发生歧化反应,生成二价铜与铜单质。同时Cu2O还是一种p型半导体,在光照下即可激发光生载流子,产生电子-空穴对,这些空穴容易得电子因而具有较强氧化性,可作为某些有机物的氧化剂,亦可作为反应的催化
Cu2O光催化原理如

图1 Cu2O光催化机理
Fig. 1 Photocatalytic mechanism of Cu2O
Cu2O和TiO2同为半导体氧化物催化
(1) |
Cu2O具有良好的抑菌活性,它既可以通过产生活性氧杀
Cu2O亦可应用于传感领域,可对H2O2、葡萄糖、氨气、CO、NO2等物质进行检
综上所述,由于活泼的化学性质以及独特的理化性质,Cu2O可在光催化降解、太阳能电池、生物抗菌材料、传感器等多个领域发挥作用。
Cu2O改性的纤维素基功能材料已得到了广泛的研究。纳米Cu2O在纤维素上的负载方式可分为异位法(ex-situ)和原位法(in-situ)2
异位法需先制备Cu2O纳米粒子(Cu2O NPs),然后再将其上样到纤维素基质上,纳米粒子的负载往往通过物理方式实现。异位法制备Cu2O-纤维素复合材料在目前的研究中出现较少,制备方式有物理混合、交联剂黏合、静电纺丝
Alireza等

图2 含八面体Cu2O纳米粒子的纤维素溶液旋涂生产杂化材料的HR-SEM图像和XRD曲
Fig. 2 HR-SEM images and XRD curve of hybrid material produced by spin-coating technique with cellulose solution containing octahedral Cu2O NP
使用原位法在纤维素上负载Cu2O NPs,通常为两步反应:第一步先让铜离子吸附固定在纤维素表面,第二步引发还原反应生成不溶性的Cu(I)氧化物完成负载。和异位法相较,原位法是一种更直接的制备方式,具有化学试剂使用少、制备方便、成本低廉、过程清洁等优点,且其制得的Cu2O粒子粒径分布更窄,与纤维素基质的结合更
水热法是一种将一定比例的前驱物放于密闭的反应釜内,在高温高压下反应,使通常条件下难溶的物质溶解并重结晶,最终获得反应产物的制备方
水热法负载Cu2O和水热法制备Cu2O流程类似,将铜前驱体与纤维素以及其他反应原料加入反应釜中,在高温高压下持续反应一段时间即可制得Cu2O-纤维素复合材料。Bhutiya等
液相还原法是近来研究者使用的主流方法,具有操作便捷、反应迅速、成本低廉、过程可控等优势。亦可用此法制备纯Cu2O,其原理为使用硼氢化钠、肼、羟胺、葡萄
使用液相还原法在纤维素上负载Cu2O,其制备流程和反应机理与制备纯Cu2O类似。此时,纤维素可作为保护剂和有机模板,在C
按照反应使用的还原剂种类,可以将合成方法分为外加还原剂和不外加还原剂2种。
纤维素负载Cu2O常用的还原剂有抗坏血酸、甲醛、肼、羟胺、葡萄糖等。EIVAZIHOLLAGH等

图3 再生纤维素网络中Cu NPs的FE-SEM图像和XRD曲
Fig. 3 FE-SEM images and XRD curve of regenerated cellulose network containing Cu NP
SU等
纤维素C1上的羟基具有还原性,故可将纤维素作为还原剂,而不需向反应体系额外加入还原剂。SUN等
除直接使用纤维素作还原剂外,还可先对纤维素预处理,提高其反应活性,使之与Cu2O粒子结合得更牢固。胡
天然纤维素纤维的结构在氧化过程中会发生变化。除了分子水平上的官能团类型和含量以及聚合度的改变外,氧化还导致纤维素超分子和形态结构发生变化。这些变化导致纤维素可及性增强,同时TEMPO氧化的纤维素还可与C
液相还原法(如

图4 液相还原法制备Cu2O-纤维素复合材料流程图
Fig. 4 Process of preparing Cu2O cellulose-based composite material by chemical liquid-phase reduction method
Cu2O纳米粒子在纤维素表面的形成可分为3个阶段:第一阶段是C
一般认为纤维素表面羟基可通过静电作用和螯合作用吸附并锚定C
(2) |
纤维素分子异头碳端的羟基在开环时会形成具有还原性的醛基,可将C

图5 纤维素还原性末端将C
Fig. 5 Reducing end of cellulose reduces C
加入的葡萄糖、水合肼、羟胺等还原剂在碱性条件下亦可还原C
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
其中式(3)~
(9) |

图6 葡萄糖为还原剂,纤维素链上负载纳米Cu2O的合成示意图
Fig. 6 Diagram of nano-Cu2O loading on cellulose chains, glucose as reducing agent
反应结合时NaOH浓度应足够低,以避免大量Cu(OH)2产生,否则在碱性条件下将不可逆地生成CuO,影响生成Cu2O的纯度,反应方程如
(10) |
Cu2O不溶于水,在溶液中的饱和度非常低,随着还原反应的进行,纤维素周围的Cu2O很快就出现过饱和。这时除在溶液中形成Cu2O微粒外,还会在纤维素表面形成成核位点。
Cu2O晶体最终在纤维素表面的成核位点处开始生长。根据晶体生长理论,单形态由不同晶面的生长速度决定,对于Cu2O立方单晶而言,当晶面(111)生长较快时,晶体的形状倾向于立方体,(100)晶面生长较快时则倾向于八面体,二者的生长速度相当时,则表现出截断的八面体形
有研究者在负载Cu2O前对纤维素进行改性处理,最终获得了更好的负载效果。目前研究中出现的化学预处理有2类:TEMPO介导的氧化(如

图7 TEMPO选择性氧化葡萄糖单元伯羟基
Fig. 7 TEMPO selectively oxidizes primary hydroxyl of glucose unit

图8 高碘酸钠氧化纤维素生成双醛纤维素
Fig. 8 Sodium periodate oxidizes cellulose to produce dialdehyde cellulose
使用高碘酸/高碘酸盐将纤维素氧化为双醛基纤维素是另一类常见预处理,反应原理为高碘酸中的I-O键进攻纤维素脱水葡萄糖单元C2或C3上的仲羟基,先形成环酯中间体,最终脱水葡萄糖单元六元环断裂,在C2和C3各生成一个醛基。
反应后纤维素的还原性得到加强,同时C2、C3上羟基的消失大大削弱了纤维素分子的氢键网络,导致纤维素结晶度明显下降,官能团的可及度得到提高,二者均有利于还原反应的进行。反应时,双醛基纤维素上的—CHO将C
纳米Cu2O以其大比表面积、高反应活性和可见光下具有催化性能等优势,成为一种理想的光催化半导体材料,然而现实中粉末状的纳米Cu2O难以单独使用,往往负载在某些固体基质表面以便后续操作和使用后回收。在这类应用场景中,纤维素基质常被制成薄膜或具有多孔结构的气凝胶,以增大其比表面积,便于Cu2O的负载并且为催化反应提供更大的反应接触面积和更好的吸附性能。
Cu2O-纤维素复合材料在可见光照射下即可催化降解各类有机污染物,可应用于去除水体有机污染领
Cu2O-纤维素复合材料除用于催化降解有机污染物,还可用于光催化氧化甲醛和还原CO2气体。Cu2O光催化还原CO2气体的主要原理为Cu2O在光照下激发出电子空穴对,还原性的电子转移给CO2分子,根据电子转移数量的多少可将CO2还原成甲酸、一氧化碳、甲醇等产
Cu2O发挥催化作用依赖于受光激发的电子-空穴对与反应物质接触,因此电子和空穴必须从内部扩散到Cu2O表面才能发挥作用。然而Cu2O的空穴扩散长度较短,多数电子-空穴对在扩散到表面前就已复

图9 制备的Cu2O空心球的SEM图像、TEM图像、HRTEM图像和XPS光
Fig. 9 SEM images, TEM image, HRTEM image and XPS spectra of the prepared Cu2O hollow sphere
Cu2O纤维素复合材料同样存在光生载流子易复合、Cu2O稳定性差等问题。如何进一步提高复合材料催化效率和稳定性,目前对这方面的研究还比较少。SUN等

图10 CAPs/Cu2O Z型异质结光催化机理
Fig. 10 Photocatalytic mechanism of CAPs/Cu2O Z-scheme heterojunction

图11 pDET/Cu CP的合成示意图及SEM图、TEM图、HRTEM图和电子衍射
Fig. 11 Schematic of the pDET/Cu CP and its SEM images, TEM image, HRTEM images and electron diffraction patter
由于纤维素,尤其是细菌纤维素具有十分良好的生物相容
因纤维素水凝胶具有优良的变形性和持水性,可以紧密贴合伤口,缓解伤患疼
MONTAZER等
Cu2O纤维素复合材料还可应用于新型织物、超级电容器柔性电极和传感器领域。
新型织物是将TiO
Cu2O纤维素复合材料可作为超级电容
Cu2O纤维素复合材料还可作为化学传感器。Sedighi等
纤维素作为储量丰富的可再生资源,具有环境友好、无毒性、无污染和可生物降解等优点,对其进行深入研究并开发利用对人类社会可持续发展具有重大意义。Cu2O作为一种p型半导体,具有低毒性、低制备成本、可见光下具有催化活性等优点,可用于光催化、传感、抗菌等多个领域。将Cu2O颗粒负载到纤维素制成复合材料,可充分利用二者的优势,具有广阔的应用前景。至今已有许多学者对这一领域做出贡献,对这些研究工作进行梳理分析后,该领域今后可能的研究方向如下。
(1)提高纳米Cu2O的稳定性和催化活性。
作为半导体,Cu2O存在光生载流子易复合、易光腐蚀、在空气中易氧化的缺陷,往往需要进行掺杂等处理以提高催化性能和稳定性。Cu2O纤维素复合材料同样面临这些问题,如何在已有研究的基础上改善Cu2O的性能,是一个值得探索的方向。
(2)负载过程Cu2O的形貌控制。
Cu2O晶体的生长和形貌控制是一个非常复杂的问题,铜前驱体的浓度和种类、反应温度、溶液pH、还原剂种类等因素均会影响最终形成的Cu2O形态,目前对负载过程Cu2O形成机理的研究还比较少。
Cu2O纤维素复合材料制备方式灵活可控,根据使用的纤维素基体和负载条件的控制可以赋予材料抑菌、光催化、抗紫外线等多种性能,展现出巨大的应用前景;除可应用于水体有机污染处理、抗菌医护材料、柔性电极等领域外,在特种纸领域也有很大的应用潜力,根据应用场景,可作为应用食品包装的抑菌材料、具有催化降解甲醛气体功能的室内壁纸、纸基柔性传感器等。相信在研究者的努力下,未来一定有更多应用领域被发掘出来。
参考文献
陈嘉川, 颜家强, 张 凯, 等. 微晶纤维素的制备及其在功能材料领域中的应用进展[J]. 中国造纸, 2021, 40(3):63-70. [百度学术]
CHEN J C, YAN J Q, ZHANG K. et al. Preparation of Microcrystalline Cellulose and Its Application in the Field of Functional Materials[J]. China Pulp & Paper, 2021, 40(3):63-70. [百度学术]
唐世钰, 杨 健, 杜 宏, 等.纤维素纳米纤丝在生物质基3D打印材料中的应用研究[J]. 中国造纸, 2021, 40(1):95-105. [百度学术]
TANG S Y, YANG J, DU H, et al. Study on the Application Progress of Cellulose Nanofibril in Bio-based 3D Printing Feedstocks[J]. China Pulp & Paper, 2021, 40(1):95-105. [百度学术]
付时雨. 纤维素的研究进展[J]. 中国造纸, 2019, 38(6):54-64. [百度学术]
FU S Y. Progress in Cellulose Research[J]. China Pulp & Paper, 2019, 38(6):54-64. [百度学术]
丛高鹏, 时 锋, 施英乔, 等. 实现纸业升级和生物质资源高值利用的有效方法:林基生物质精炼技术[J]. 中华纸业, 2011, 32(19):43-48. [百度学术]
CONG G P, SHI F, SHI Y Q, et al. An Effective Method to Realize the Upgrading of the Paper Industry and High-value Utilization of Biomass Resources: Forest-based Biomass Refining Technology[J]. China Pulp & Paper Industry, 2011, 32(19):43-48. [百度学术]
杨桂花, 李伟栋, 和 铭, 等. 纳米纤维素基气凝胶的制备及其吸附分离应用研究进展[J]. 中国造纸学报, 2021, 36(2):87-96. [百度学术]
YANG G H, LI W D, HE M, et al. Research Progress on Preparation of Nanocellulose-based Aerogel and Its Application in Absorption and Separation[J]. Transactions of China Pulp and Paper, 2021, 36(2):87-96. [百度学术]
樊 丽, 刘鹏涛, 刘新亮. 抗菌性载银纳米微晶纤维素的制备及表征[J]. 中国造纸学报, 2019, 34(2):8-13. [百度学术]
FAN L, LIU P T, LIU X L. Preparation and Characterization of Silver-loaded Nanocrystalline Cellulose[J]. Transactions of China Pulp and Paper, 2019, 34(2):8-13. [百度学术]
CHU S Y, MIAO Y S, QIAN Y, et al. Synthesis of Uniform Layer of TiO2 Nanoparticles Coated on Natural Cellulose Micrometer-sized Fibers through a Facile One-step Solvothermal Method[J]. Cellulose, 2019, 26(8):4757-4765. [百度学术]
RO Y C, RI Y I, JONG G J. Manufacturing of High-efficiency Air Filter Paper Using Ultra-fine Fibers[J]. Paper and Biomaterials, 2019, 4(1):17-22. [百度学术]
CAO H M, YANG a L, LI H, et al. A Non-enzymatic Glucose Sensing Based on Hollow Cuprous Oxide Nanospheres in a Nafion Matrix[J]. Sensors & Actuators B: Chemical, 2015, 214:169-173. [百度学术]
杨步君, 于少明. 纳米Cu2O的制备及其抑菌性研究[J]. 安徽化工, 2018, 44(1):32-35. [百度学术]
YANG B J, YU S M. Synthesis and Antibacterial Activity of Cu2O Nanoparticles[J]. Anhui Chemical Industry, 2018, 44(1):32-35. [百度学术]
UMAMAHESWARI R, VETRI S S, CHEN S M, et al. A Nanocomposite Consisting of Cuprous Oxide Supported on Graphitic Carbon Nitride Nanosheets for Non-enzymatic Electrochemical Sensing of 8-Hydroxy-2'-Deoxyguanosine[J]. Mikrochimica Acta, 2020, 187(8): 1-10. [百度学术]
WANG Z Z, SUN M L, NI J F, et al. Nature-inspired Cu2O@CoO Tree-like Architecture for Robust Storage of Sodium[J]. Journal of Materials Science & Technology, 2020, 53: 126-131. [百度学术]
JACOB S S K, KULANDAISAMY I, VALANARASU S, et al. Improving Carrier Transport in Strontium-doped Cuprous Oxide Thin Films Prepared by Nebulizer Spray Pyrolysis for Solar Cell Applications[J]. Indian Journal of Physics, 2019, 94: 527-1535. [百度学术]
DANIEL U, ANAMARIA D, MELINDA V, et al. Effect of Cu2O Morphology on Photovoltaic Performance of P-type Dye-sensitized Solar Cells[J]. Annals of West University of Timisoara-physics, 2018, 60(1): 67-74. [百度学术]
GURIANOV Y, NAKONECHNY F, ALBO Y, et al. Antibacterial Composites of Cuprous Oxide Nanoparticles and Polyethylene[J]. International Journal of Molecular Sciences, 2019, 20(2): 439-454. [百度学术]
MAO T Y, LU G, XU C Y, et al. Preparation and Properties of Polyvinylpyrrolidone-cuprous Oxide Microcapsule Antifouling Cating[J]. Progress in Organic Coatings, 2020, 141: 105317-105323. [百度学术]
BING Z, LI X Q, GE R Y, et al. Assembly and Electron Transfer Mechanisms on Visible Light Responsive 5,10,15,20-Meso-Tetra(4-Carboxyphenyl)Porphyrin/Cuprous Oxide Composite for Photocatalytic Hydrogen Production[J]. Applied Catalysis A, General, 2017, 533: 81-89. [百度学术]
MINGGU L J, SALEHMIN M N I, MOHAMED M A, et al. A Low Overpotential Photoelectrochemical Reduction of Carbon Dioxide to Methanol with Highly Photoactive Hierarchical Structured Cuprous Oxide[J]. Ceramics International, 2020, 46: 26004-26016. [百度学术]
SHI W N, GUO X W, WANG J C, et al. Enhanced Photocatalytic 3D/2D Architecture for CO2 Reduction over Cuprous Oxide Octahedrons Supported on Hexagonal Phase Tungsten Oxide Nanoflakes[J]. Journal of Alloys and Compounds, 2020, 830: 154683-154689. [百度学术]
AGUILAR M, ROSAS G. A New Synthesis of Cu2O Spherical Particles for the Degradation of Methylene Blue Dye[J]. Environmental Nanotechnology, Monitoring & Management, 2019, 11: 100195-100201. [百度学术]
WU X, MENG H, DU Y L, et al. Insight into Cu2O/Cuo Collaboration in the Selective Catalytic Reduction of NO with NH3: Enhanced Activity and Synergistic Mechanism[J]. Journal of Catalysis, 2020, 384: 72-87. [百度学术]
NEGAR D K, REZA K, SAEIDEH K E, et al. Visible Light Driven Heterojunction Photocatalyst of CuO-Cu2O Thin Films for Photocatalytic Degradation of Organic Pollutants[J]. Nanomaterials (Basel, Switzerland), 2019, 9(7): 1011-1022. [百度学术]
左欢欢, 陈海林. N掺杂TiO2纳米管阵列膜光催化剂制备及其处理造纸废水的研究[J]. 中国造纸, 2021, 40(3):106-110. [百度学术]
ZUO H H, CHEN H L. Preparation of N-doped TiO2 Nanotube Array Membrane Catalyst and Its Application in Photocatalytic Treatment of Papermaking Wastewater[J]. China Pulp & Paper, 2021, 40(3):106-110. [百度学术]
WANG W, FENG H M, LIU J G, et al. A Photo Catalyst of Cuprous Oxide Anchored Mxene Nanosheet for Dramatic Enhancement of Synergistic Antibacterial Ability[J]. Chemical Engineering Journal, 2020, 386: 124116-124127. [百度学术]
WANG Y, YANG Q W, YANG Q, et al. Cuprous Oxide Nanoparticles Inhibit Prostate Cancer by Attenuating the Stemness of Cancer Cells Via Inhibition of the Wnt Signaling Pathway[J]. International Journal of Nanomedicine, 2017, 12:2569-2579. [百度学术]
WANG Y, YANG F, ZHANG H X, et al. Cuprous Oxide Nanoparticles Inhibit the Growth and Metastasis of Melanoma by Targeting Mitochondria[J]. Cell Death & Disease, 2013, 4(8): 783-793. [百度学术]
DHARA K, MAHAPATRA D R. Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review[J]. Journal of Materials Science, 2019, 54(19): 1-39. [百度学术]
KIM J H, LEE J H, KIM J Y, et al. Enhancement of CO and NO2 Sensing in N-SnO2-P-Cu2O Core-shell Nanofibers by Shell Optimization[J]. Journal of Hazardous Materials, 2019, 376: 68-82. [百度学术]
LI S, ZHENG Y J, QIN G W, et al. Enzyme-Free Amperometric Sensing of Hydrogen Peroxide and Glucose at a Hierarchical Cu2O Modified Electrode[J]. Talanta, 2011, 85(3): 1260-1264. [百度学术]
陆 颖. Cu2O-碳纳米管复合纳米材料的制备及应用于超级电容器和生物传感器[D]. 苏州:苏州大学, 2018. [百度学术]
LU Y. Synthesis of Cu2O-MWCNTs Nanocomposites for Applications in Supercapacitors and Biosensors[D]. Suzhou: Suzhou University, 2018. [百度学术]
EMAM H E, AHMED H B, BECHTOLD T. In-situ Deposition of Cu2O Micro-needles for Biologically Active Textiles and Their Release Properties[J]. Carbohydrate Polymers, 2017, 165: 255-265. [百度学术]
Kendouli S, Sobti N, Achour S. Electrospun Nanofibers from Cu2O Nanoparticles and Cellulose Acetate[J]. Sciences & Technologie, 2015(41):89-92. [百度学术]
ALIREZA E, MAGNUS N, CHRISTINA D, et al. Controlled Synthesis of Cu and Cu2O NPs and Incorporation of Octahedral Cu2O NPs in Cellulose II Films[J]. Nanomaterials, 2018, 8(4):238-243. [百度学术]
NIE J, LI C, JIN Z, et al. Fabrication of MCC/Cu2O/GO Composite Foam with High Photocatalytic Degradation Ability Toward Methylene Blue[J]. Carbohydrate Polymers, 2019, 223: 115101-115111. [百度学术]
TURALIJA M, MERSCHAK P, REDL B, et al. Copper(I)oxide Microparticles-Synthesis and Antimicrobial Finishing of Textiles[J]. Journal of Materials Chemistry B, 2015, 3(28):5886-5892. [百度学术]
CAI J, SATOSHI K, MASAHISA W, et al. Nanoporous Cellulose as Metal Nanoparticles Support[J]. Biomacromolecules, 2009, 10(1): 87-94. [百度学术]
SINGH S, KUMAR U, YADAV B, et al. Development of Scattering Based Glucose Sensor Using Hydrothermally Synthesized Cuprous Oxide Nanoparticles[J]. Results in Physics, 2019, 15: 102772-102777. [百度学术]
周 妍. Cu2O成分调控及其光催化降解性能研究[D]. 昆明: 云南大学, 2019. [百度学术]
ZHOU Y. Study on the Control of Cuprous Oxide Composition and Its Photocatalytic Degradation Performance[D]. Kunming: Yunnan University, 2019. [百度学术]
BHUTIYA P L, MISRA N, RASHEED M A, et al. Nested Seaweed Cellulose Fiber Deposited with Cuprous Oxide Nanorods for Antimicrobial Activity[J]. International Journal of Biological Macromolecules, 2018, 117: 435-444. [百度学术]
万文亮, 郎五可, 郭晓伟. 葡萄糖还原法制备不同形貌Cu2O的研究[J]. 化学研究与应用, 2020, 32(7):1141-1146. [百度学术]
WAN W L, LANG W K, GUO X W. Study of Diverse Morphology of Cu2O Synthesized through Glucose Reduction[J]. Chemical Research and Application, 2020, 32(7):1141-1146. [百度学术]
万 千. 微纳米Cu及Cu2O液相还原制备与表征[D]. 沈阳: 东北大学, 2014. [百度学术]
WAN Q. Preparation and Characterization of Micro/Nano Cu and Cu2O by Liquid Reduction Method[D]. Shenyang: Northeast University, 2014. [百度学术]
RIPPNER D A, LIEN J, BALLA H, et al. Surface Modification Induced Cuprous Oxide Nanoparticle Toxicity to Duckweed at Sub-toxic Metal Concentrations[J]. Science of the Total Environment, 2020, 722: 137607-137615. [百度学术]
MALLIK M, MONIA S, GUPTA M, et al. Synthesis and Characterization of Cu2O Nanoparticles[J]. Journal of Alloys and Compounds, 2020, 829: 154623-154628. [百度学术]
EIVAZIHOLLAGH A, BÄCKSTRÖM J, DAHLSTRÖM C, et al. One-pot Synthesis of Cellulose-templated Copper Nanoparticles with Antibacterial Properties[J]. Materials Letters, 2017, 187: 170-172. [百度学术]
ERROKH A, FERRARIA a M, CONCEIÇÃO D S, et al. Controlled Growth of Cu2O Nanoparticles Bound to Cotton Fibres[J]. Carbohydrate Polymers, 2016, 141: 229-237. [百度学术]
SU X, CHEN W, HAN Y, et al. In-situ Synthesis of Cu2O on Cotton Fibers with Antibacterial Properties and Reusable Photocatalytic Degradation of Dyes[J]. Applied Surface Science, 2021, 536: 147945-147953. [百度学术]
SUN L J, XIN X, AN X H, et al. Nano-Cu2O-loaded Paper: Green Preparation and High Visible Light Photocatalytic Performance for Formaldehyde Removal[J]. Paper and Biomaterials, 2019, 4(3):1-14. [百度学术]
胡 英. Cu2O/微生物纤维素复合膜制备及其结构性能研究[D]. 上海: 东华大学, 2019. [百度学术]
HU Y. Preparation, Structure and Properties of Cuprous Oxide/Microbial Cellulose Composites[D]. Shanghai: Donghua University, 2019. [百度学术]
MARKOVIĆ D, KORICA M, KOSTIĆ M, et al. In Situ Synthesis of Cu/Cu2O Nanoparticles on the TEMPO Oxidized Cotton Fabrics[J]. Cellulose, 2018, 25(1): 829-841. [百度学术]
WAN C, JIAO Y, LI J. Multilayer Core-shell Structured Composite Paper Electrode Consisting of Copper, Cuprous Oxide and Graphite Assembled on Cellulose Fibers for Asymmetric Supercapacitors[J]. Journal of Power Sources, 2017, 361(1):122-132. [百度学术]
SABBAGHAN M, ARGYROPOULOS D S. Synthesis and Characterization of Nano Fibrillated Cellulose/Cu2O Films; Micro and Nano Particle Nucleation Effects[J]. Carbohydrate Polymers, 2018, 197: 614-622. [百度学术]
KLEMM D, PHILPP B, HEINZE T, et al. Comprehensive Cellulose Chemistry[M]//Fundamentals and Analytical Methods: Volume 1. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 1998. [百度学术]
SEDIGHI A, MONTAZER M, HEMMATINEJAD N. Copper Nanoparticles on Bleached Cotton Fabric: In Situ Synthesis and Characterization[J]. Cellulose, 2014, 21(3): 2119-2132. [百度学术]
CAO Y, WANG Y J, ZHOU K G, et al. Morphology Control of Ultrafine Cuprous Oxide Powder and Its Growth Mechanism[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 216-220. [百度学术]
吴 慧, 汤祖武, 卢生昌, 等. 高羧基含量TEMPO氧化纤维素的制备与表征[J]. 森林与环境学报, 2019, 39(1):88-94. [百度学术]
WU H, TANG Z W, LU S C, et al. Preparation and Characterization of TEMPO-oxidized Cellulose with High Carboxyl Content[J]. Journal of Forest and Environment, 2019, 39(1):88-94. [百度学术]
MARKOVIĆ D, DEEKS C, NUNNEY T, et al. Antibacterial Activity of Cu-based Nanoparticles Synthesized on the Cotton Fabrics Modified with Polycarboxylic Acids[J]. Carbohydrate Polymers, 2018, 200: 173-182. [百度学术]
苏秀平. 功能性纤维素基气凝胶的制备及其对染料的吸附降解行为研究[D]. 杭州: 浙江理工大学, 2017. [百度学术]
SU X P. Fabrication of Functional Cellulose-based Aerogels and Their Adsorption and Degradation Behaviors to Dyes[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. [百度学术]
廖 骞. 功能性纤维素气凝胶的制备及其在水净化中的应用研究[D]. 杭州: 浙江理工大学, 2017. [百度学术]
LIAO Q. Fabrication of Functional Cellulose Aerogels and Their Application in Water Purification[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. [百度学术]
SU X P, LIAO Q, LIU L, et al. Cu2O Nanoparticle-functionalized Cellulose-based Aerogel as High-prformance Visible-light Photocatalyst[J]. Cellulose, 2017, 24(2): 1017-1029. [百度学术]
BHUPENDRA K, MARK L, JESSE F, et al. Photochemical and Photoelectrochemical Reduction of CO2[J]. Annual Review of Physical Chemistry, 2012, 63: 541-569. [百度学术]
YISILAMU G, MAIMAITI H, AWATI A, et al. Preparation of Cuprous Oxide Nanoparticles Coated with Aminated Cellulose for the Photocatalytic Reduction of Carbon Dioxide to Methanol[J]. Energy Technology, 2018, 6(6): 1168-1177. [百度学术]
BOTSA S M, BASAVAIAH K. Fabrication of Multifunctional TANI/Cu2O/Ag Nanocomposite for Environmental Abatement[J]. Scientific Reports, 2020, 10(1): 1-16. [百度学术]
TOE C Y, ZHENG Z K, WU H, et al. Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-oxidation or Self-Reduction[J]. Angewandte Chemie (International ed. in English), 2018, 57(41): 13613-13617. [百度学术]
TOE C Y, SCOTT J, AMAL R, et al. Recent Advances in Suppressing the Photocorrosion of Cuprous Oxide for Photocatalytic and Photoelectrochemical Energy Conversion[J]. Journal of Photochemistry & Photobiology, C: Photochemistry Reviews, 2019, 40: 191-211. [百度学术]
员晓刚. Cu2O在光催化水分解中的性能及失活机理研究[D]. 天津: 天津大学, 2017. [百度学术]
YUAN X G. the Performance and Deactivation Mechanism of Cu2O in Photocatalytic Water Splitting[D]. Tianjin: Tianjin University, 2017. [百度学术]
POLAT K. Cuprous Oxide Film Sputtered on Monolayer Graphene for Visible Light Sensitive Heterogeneous Photocatalysis[J]. Thin Solid Films, 2020, 709: 138254-138259. [百度学术]
FU Y Q, LI Q, LIU J N, et al. In-situ Chemical Vapor Deposition to Fabricate Cuprous Oxide/Copper Sulfide Core-shell Flowers with Boosted and Stable Wide-spectral Region Photocatalytic Performance[J]. Journal of Colloid and Interface Science, 2020, 570: 143-152. [百度学术]
张敬珍. 铜氧化物的制备及其性能研究[D]. 重庆: 西南科技大学, 2019. [百度学术]
ZHANG J Z. Study on Preparation and Properties of Copper Oxide[D]. Chongqing: Southwest University of Science and Technology, 2019. [百度学术]
SUN H J, DONG C L, LIU Q L, et al. Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Z-scheme Heterojunction for Photoelectrochemical Water Reduction[J]. Advanced Materials, doi: 10.1002/adma.202002486. [百度学术]
GAO M H, LI J, BAO Z X, et al. A Natural in Situ Fabrication Method of Functional Bacterial Cellulose Using a Microorganism[J]. Nature Communications, 2019, 10(1): 1-10. [百度学术]
FAWAL G F E, ABU M M-Serie , HASSAN M A, et al. Hydroxyethyl Cellulose Hydrogel for Wound Dressing: Fabrication, Characterization and in Vitro Evaluation[J]. International Journal of Biological Macromolecules, 2018, 111: 649-659. [百度学术]
MOHAMAD N, BUANG F, LAZIM a M, et al. Characterization and Biocompatibility Evaluation of Bacterial Cellulose-based Wound Dressing Hydrogel: Effect of Electron Beam Irradiation Doses and Concentration of Acrylic Acid[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017, 105(8): 2553-2564. [百度学术]
MARIAM M, NAJABAT a M, AFIFA B, et al. Synthetic Polymeric Biomaterials for Wound Healing: A Review[J]. Progress in Biomaterials, 2018, 7(1): 1-21. [百度学术]
JENNI L, PANU L, ANTTI P, et al. 3D-printable Bioactivated Nanocellulose-Alginate Hydrogels[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21959-21970. [百度学术]
NGUYEN T H M, ABUEVA C, HO H V, et al. in Vitro and in Vivo Acute Response towards Injectable Thermosensitive Chitosan/TEMPO-oxidized Cellulose Nanofiber Hydrogel[J]. Carbohydrate Polymers, 2018, 180: 246-255. [百度学术]
HU Y, KE Q F, LI Z, et al. in Situ Synthesis of Cuprous Oxide/Cellulose Nanofibers Gel and Antibacterial Properties[J]. CMC: Computers, Materials & Continua, 2018, 56(3):517-527. [百度学术]
MONTAZER M, DASTJERDI M, AZDALOO M, et al. Simultaneous Synthesis and Fabrication of Nano Cu2O on Cellulosic Fabric Using Copper Sulfate and Glucose in Alkali Media Producing Safe Bio- and Photoactive Textiles Without Color Change[J]. Cellulose, 2015, 22(6): 4049-4064. [百度学术]
GUO X, LYU B, GAO D G, et al. Water Vapor Permeability and Self-cleaning Properties of Solvent-free Polyurethane Improved by Hollow Nano-TiO2 Spheres[J]. Journal of Applied Polymer Science, 2021, 138(1): 49638-49650. [百度学术]
GAMINIAN H, MONTAZER M. Enhanced Self-cleaning Properties on Polyester Fabric under Visible Light Through Single-step Synthesis of Cuprous Oxide Doped Nano-TiO2[J]. Photochemistry and Photobiology, 2015, 91(5): 1078-1087. [百度学术]
REZAIE a B, MONTAZER M, RAD M M. Antibacterial, UV Protective and Ammonia Sensing Functionalized Polyester Fabric Through in Situ Synthesis of Cuprous Oxide Nanoparticles[J]. Fibers and Polymers, 2017, 18(7): 1269-1279. [百度学术]
肖 凤, 王文利, 陈丹丹, 等. 纳米Cu2O/还原氧化石墨烯负载棉织物的制备及性能研究[J]. 现代丝绸科学与技术, 2020, 35(2):13-17. [百度学术]
XIAO F, WANG W L, CHEN D D, et al. Preparation and Properties of Nano-Copper Oxide/Reduced Graphene Oxide (Cu2O/RGO) Cotton Fabrics[J]. Modern Silk Science & Technology, 2020, 35(2):13-17. [百度学术]
IBRAHIM M M, MEZNI A, EL H S-Sheshtawy , et al. Direct Z-scheme of Cu2O/TiO2 Enhanced Self-Cleaning, Antibacterial Activity, and UV Protection of Cotton Fiber under Sunlight[J]. Applied Surface Science, 2019, 479: 953-962. [百度学术]
WAN C, JIAO Y, LI J. A Cellulose Fibers-Supported Hierarchical Forest-like Cuprous Oxide/Copper Array Architecture as a Flexible and Free-standing Electrode for Symmetric Supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(33): 17267-17278. [百度学术]
SEDIGHI A, MONTAZER M, SAMADI N. Synthesis of Nano Cu2O on Cotton: Morphological, Physical, Biological and Optical Sensing Characterizations[J]. Carbohydrate Polymers, 2014, 110: 489-498. CPP [百度学术]