摘要
本文综述了纤维素纳米晶体(CNC)和纤维素纳米纤丝(CNF)在增强可生物降解聚合物中的研究进展。主要介绍了两种纳米纤维素及其制备方法,阐述了纳米纤维素的增强机理和复合材料的构筑方法,详细论述了纳米纤维素在增强聚乳酸(PLA)、热塑性淀粉(TPS)、聚己内酯(PCL)应用的研究进展。最后简要分析了纳米纤维素增强可生物降解聚合物在规模化和产业化上面临的挑战,并展望了其应用前景。
由石油基聚合物制成的塑料制品如聚乙烯(PE)、聚氯乙烯(PVC)、聚丙烯(PP)等具有易于加工、成本低、强度高、阻隔性能好、透明度高等优
可生物降解材料是指在一定自然条件下可以自发进行链断裂、分子降解或由不溶变为可溶,从而逐渐被降解成H2O和CO2的材料,因此也常被称为“绿色塑料
引入结构优异、理化性能良好的天然填料,是改善可生物降解聚合物性能并保持其可生物降解性的一种有效途径。在天然填料中,纳米纤维素被认为是最具吸引力和发展前景的增强材料。纳米纤维素具有高比表面积、高反应活性、高强度、低密度、可生物降解、可再生等特点,在增强聚合物性能方面具有很大的应用潜
纤维素是自然界中广泛存在的一种绿色、可再生、易降解的天然高分子聚合物,以纤维素为原料制备的纳米纤维素更以其优异的物理和化学特性以及可再生和可持续性受到科学工作者们的极大关注,在造纸、纳米复合材料、生物医药、包装材料等多领域都有着广阔的应用前
纳米纤维素是指至少有一维空间尺寸在纳米尺度(1~100 nm)的纤维素材料,一般从木材、非木材、海洋生物等含有纤维素的材料中提取得到,来源广泛、储量丰富。根据制备方法及其外观形态,通常将纳米纤维素分为纤维素纳米晶体(cellulose nanocrystal,CNC)和纤维素纳米纤丝(cellulose nanofibril,CNF

图1 不同原料和方法制备的纳米纤维素微观形貌
Fig. 1 Micromorphology of nanocellulose prepared by different raw materials and methods
制备纳米纤维素通常以植物纤维为原料,方法主要有化学法和机械法,或者两者相结合的方
CNC的制备方法主要为酸水解法,使用的酸通常有硫
CNF主要采用机械法制备,即通过强的机械作用或剪切力使纤维解离成单个的纳米纤丝。机械法包括高压均
纳米纤维素主要通过形成氢键、逾渗网络、链缠结以及促进结晶等方式来增强复合材料的相关性
纳米纤维素增强可生物降解聚合物复合材料的方法主要有液体介质加工法和干态熔融复合法两

图2 纳米纤维素增强聚合物纳米复合材料的不同制备方
Fig. 2 Different preparation methods of nanocellulose reinforced polymer nanocomposite
干态熔融复合法包括注射成型、复合挤出和吹塑

图3 液体进料和双螺杆挤出制备纳米复合材
Fig. 3 Preparation of nanocomposites by liquid feeding and twin screw extrusio
此外,还可以对纳米纤维素进行浓缩和干燥。Peng等
注 D[n, 0.9]表示在粒径分布图中,90%的CNC和CNF粒子的粒径分别低于6.76 μm和7.48 μm。
PLA是一种热塑性脂肪族聚酯,可从天然原料中通过丙交酯的开环聚合或乳酸的缩聚得
一些研究者发现,不同纤维形态和结构的纳米纤维素对PLA基体力学性能影响有很大差别。具有较高结晶度的针状或棒状CNC可以改善PLA的机械性能,但同时会增加复合材料的脆性,其断裂伸长率明显降低。Karkhanis等
制备高性能可生物降解的纳米复合材料关键在于将纳米纤维素的优异性能转移或协同到周围的聚合物基体中。纳米纤维素表面存在大量的羟基基团,易发生团聚,且与PLA的界面相容性差,在PLA基体中较难分散均
纳米纤维素的表面吸附通常不涉及化学反应。以表面活性剂为例,具有两亲性的表面活性剂通常一端为亲水基而另一端为疏水基,通过亲水端在纳米纤维素表面沉积或者吸附,可改变纳米纤维素的表面性质,促进纳米纤维素在PLA基体中的良好分散。Petersson等
纳米纤维素表面的羟基可与不同的官能团如乙酰基(—OCCH3)、羧基(—COOH)、氨基(—NH2)等发生化学反应,赋予其疏水性。Myoung等
纳米纤维素还可以通过化学接枝单个分子或聚合物链进行改性。接枝链的种类、长度、结构不同,最终产物的性能也会千差万别。对纳米纤维素进行接枝共聚的方法有很多,通常归于两类:端基接枝(grafting onto)和原位接枝(grafting from)。端基接枝可以在合成过程中控制所得材料的性能,且在反应和纯化过程中更经济高效,但其接枝效率不高。原位接枝通过固定化的引发剂进行原位表面引发聚合,可以明显提升表面聚合物的接枝密度。基于不同的接枝策略,纳米纤维素的功能化方法又可细分为:开环聚合(ROP)、原子转移自由基聚合(ATRP)、单电子转移活性自由基聚合(SET-LP),以及使用各种偶联剂进行的接枝反应
Song等
近年还研究了一些独特的接枝方法,即当接枝链与基体相同或类似时,可以通过共连续相的形成获得更好的增容效果并改善界面结合。Ma等

图4 通过开环聚合合成CNC-rD-PDL
Fig. 4 Synthesis of CNC-rD-PDLA by ring-opening polymerizatio
注 εb为断裂伸长率;σb为抗张强度;E为弹性模量;Xc为结晶度;Ton为初始热降解温度;Tmax为最大热降解温度。
热塑性淀粉(thermoplastic starch,TPS)是以淀粉为原料经过化学改性或者增塑剂作用,淀粉颗粒破裂塑化形成的一种具有热塑性的高分子材料。其生产工艺简单、成本低、可生物降解。但与传统石油基塑料相比,它的机械性能较差,并具有很强的吸水性
纳米纤维素和TPS同为亲水性物质,具有较好的亲和力,它们之间的强氢键作用使其界面相容性良好,可限制TPS的吸水膨胀,降低吸湿性能,并改善TPS的机械性能。Kargarzadeh等
淀粉有两种不同的结构形态,分别是直链淀粉和支链淀粉。淀粉的不同形态对复合薄膜最终性能也有影响。Montero等
为了研究纳米填料与淀粉基体之间的相互作用对复合材料力学性能的影响,Prakobna等

图5 两种不同方法制备CNF/AP纳米复合材料的对
Fig. 5 Comparison of two different methods for preparing CNF/AP nanocomposite
注 εb为断裂伸长率;σb为抗张强度;E为弹性模量;G'为储能模量;Tmax为最大热降解温度。
聚己内酯(polycaprolactone,PCL)是一种低玻璃化转变温度的疏水性聚酯,一般由环ε-CL单体进行开环聚合(ROP)而成。PCL具有良好的生物相容性、有机高聚物相容性以及可生物降解性。此外PCL还具有极高的延展性,但其抗张强度和弹性模量非常低。因此,可以通过引入纳米纤维素对PCL进行增强。
由于亲水性的纳米纤维素与疏水性的PCL基体之间界面相容性较差,直接将纳米纤维素与PCL共混增强效果不佳。Habibi等

图6 纳米纤维素不同接枝策略或改性方法示意图
Fig. 6 Schematic diagram of different grafting strategies or modification methods of nanocellulose
注 εb为断裂伸长率;σb为抗张强度;E为弹性模量;Xc为结晶度;Ton为初始热降解温度;Tmax为最大热降解温度。
目前生活中常用的垃圾袋、包装袋以及地膜等塑料薄膜原材料多为聚乙烯、聚丙烯、聚氯乙烯等。可生物降解复合薄膜由于原料、制备工艺以及增强相不同等因素影响,制备出的薄膜的机械性能、阻隔性能有较大差异。

图7 不同可生物降解薄膜与常用塑料薄膜的标准抗张强度和断裂伸长率对比
Fig. 7 Comparison of standard tensile strength and elongation at break of different biodegradable films and common plastic films
随着人们对绿色可持续发展理念和环境保护意识的逐渐增强,可生物降解聚合物在替代传统石油基聚合物应用方面展现出极具潜力的发展前景。可再生、可生物降解的纳米纤维素作为增强介质能够使可生物降解聚合物在机械性能、阻隔性能等方面赶上甚至超过传统石油基聚合物。目前,国内外在研究纳米纤维素增强可生物降解聚合物方面取得了显著进展,但在大规模生产以及工业化的道路上仍存在诸多挑战。首先,在纳米纤维素的大批量制备、运输和储存过程中如何有效减少和避免纤维间的团聚对增强效果至关重要。其次,需要确保纳米纤维素在高加填量水平下仍能均匀分散在基质中,并与基质具有较强的界面相互作用,这无疑对可生物降解聚合物复合材料的工艺方法和生产设备等提出了新的要求。另外,也需要考虑和解决生产过程中有毒化学品的使用、复杂的表面改性、性能的稳定以及经济成本等各方面。但随着纳米纤维素增强可生物降解聚合物的不断研究和发展,这种具有优异性能的复合材料将在众多领域得到广泛应用。
参考文献
Stark N M. Opportunities for cellulose nanomaterials in packaging films: A review and future trends[J]. Journal of Renewable Materials, 2016, 4(5): 313-326. [百度学术]
王身国. 生物降解高分子——一类重要的生物材料 1.脂肪族聚酯的本体改性[J]. 高分子通报, 2011(10): 1-14. [百度学术]
WANG S G. Biodegradable polymer——A kind important biomaterial 1.Bulk modification of aliphatic polyesters[J]. Chinese Polymer Bulletin, 2011(10): 1-14. [百度学术]
李祖义. 生物塑料引领塑料产业新方向[J]. 工业微生物, 2019, 49(4): 56-63. [百度学术]
LI Z Y. Bioplastics leading new direction of plastics industry[J]. Industrial Microbiology, 2019, 49(4): 56-63. [百度学术]
Wang J, Liu X, Jin T, et al. Preparation of nanocellulose and its potential in reinforced composites: A review[J]. Journal of Biomaterials Science Polymer Edition, 2019, 30(11): 1-28. [百度学术]
范金石. 国外纳米木质纤维素研发概述[J]. 国际造纸, 2010, 29(4): 65-70. [百度学术]
FAN J S. Recent Foreign Research and Development of nano-lignocellusics[J]. World Pulp and Paper, 2010, 29(4): 65-70. [百度学术]
董凤霞, 刘 文, 刘红峰. 纳米纤维素的制备及应用[J]. 中国造纸, 2012, 31(6): 68-73. [百度学术]
DONG F X, LIU W, LIU H F. Preparation and Application of Nanocellulose[J]. China Pulp & Paper, 2012, 31(6): 68-73. [百度学术]
罗嘉倩, 苏艳群, 刘金刚, 等. 纳米纤维素材料氧气与水蒸气阻隔性能的研究现状[J]. 中国造纸学报, 2019, 34(3): 61-70. [百度学术]
LUO J Q, SU Y Q, LIU J G, et al. Oxygen and Water Vapor Barrier Properties of Nanocellulose Materials: A review[J]. Transactions of China Pulp and Paper, 2019, 34(3): 61-70. [百度学术]
Zhou Y, Saito T, Bergström L, et al. Acid-free preparation of cellulose nanocrystals by TEMPO oxidation and subsequent cavitation[J]. Biomacromolecules, 2018, 19(2): 633-639. [百度学术]
Yahya M, Chen Y W, Lee H V, et al. A new protocol for efficient and high yield preparation of nanocellulose from elaeis guineensis biomass: A response surface methodology (RSM) study[J]. Journal of Polymers and the Environment, 2019, 27(4): 678-702. [百度学术]
Roman M, Winter W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5(5): 1671-1677. [百度学术]
Fujisawa S, Okita Y, Fukuzumi H, et al. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups[J]. Carbohydrate Polymers, 2011, 84(1): 579-583. [百度学术]
马海珠, 周天文, 薛国新, 等. 超低浓度酸水解制备纤维素纳米纤丝的初步研究[J]. 中国造纸, 2020, 39(1): 17-25. [百度学术]
MA H Z, ZHOU T W, XUE G X, et al. Preliminary Study on Preparation of Cellulose Nanofibrils by Ultra-low Concentration Acid Hydrolysis[J]. China Pulp & Paper, 2020, 39(1): 17-25. [百度学术]
Abraham E, Deepa B, Pothan L A, et al. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach[J]. Carbohydrate Polymers, 2011, 86(4): 1468-1475. [百度学术]
Kargarzadeh H, Mariano M, Gopakumar D, et al. Advances in cellulose nanomaterials[J]. Cellulose, 2018, 25(4): 2151-2189. [百度学术]
郄冰玉, 唐亚丽, 卢立新, 等. 纳米纤维素在可降解包装材料中的应用[J]. 包装工程, 2017, 38(1): 19-25. [百度学术]
QIE B Y, TANG Y Y, LU L X, et al. Application of nano-cellulose in degradable packaging materials[J]. Packaging Engineering, 2017, 38(1): 19-25. [百度学术]
何孝清. 纳米纤维素的制备及其在造纸领域的应用[J]. 中国造纸, 2019, 38(10): 68-74. [百度学术]
HE X Q. Preparation of Nanocellulose and its Application in Papermaking Field[J]. China Pulp & Paper, 2019, 38(10): 68-74. [百度学术]
Gao M, Li J, Bao Z, et al. A natural in situ fabrication method of functional bacterial cellulose using a microorganism[J]. Nature Communications, 2019, 10(1): 1-10. [百度学术]
Martelli-Tosi M, Masson M M, Silva N C, et al. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films[J]. Carbohydrate Polymers, 2018, 198: 61-68. [百度学术]
Jang K H, Yu Y J, Lee Y H, et al. Antimicrobial activity of cellulose-based nanofibers with different Ag phases[J]. Materials Letters, 2014, 116: 146-149. [百度学术]
Chen Y W, Lee H V. Revalorization of selected municipal solid wastes as new precursors of “green” nanocellulose via a novel One-Pot isolation system: A source perspective[J]. International Journal of Biological Macromolecules, 2018, 107: 78-92. [百度学术]
Yu H, Qin Z, Liang B, et al. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions[J]. Journal of Materials Chemistry A, 2013, 1(12): 3938-3944. [百度学术]
Camarero Espinosa S, Kuhnt T, Foster E J, et al. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis[J]. Biomacromolecules, 2013, 14(4): 1223-1230. [百度学术]
Gan I, Chow W S. Synthesis of phosphoric acid-treated sugarcane bagasse cellulose nanocrystal and its thermal properties enhancement for poly (lactic acid) nanocomposites[J]. Journal of Thermoplastic Composite Materials, 2019, 32(5): 619-634. [百度学术]
Corrêa A C, de Morais Teixeira E, Pessan L A, et al. Cellulose nanofibers from curaua fibers[J]. Cellulose, 2010, 17(6): 1183-1192. [百度学术]
Chen Y W, Hasanulbasori M A, Chiat P F, et al. Pyrus pyrifolia fruit peel as sustainable source for spherical and porous network based nanocellulose synthesis via One-Pot hydrolysis system[J]. International Journal of Biological Macromolecules, 2019, 123: 1305-1319. [百度学术]
Missoum K, Bras J, Belgacem M N. Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties[J]. Cellulose, 2012, 19(6): 1957-1973. [百度学术]
Li P, Liu H, Hou Q, et al. Preparation and Applications of Soybean Residue CNF Films[J]. Paper and Biomaterials, 2019, 4(3): 45-53. [百度学术]
Wang H, Zuo M, Ding N, et al. Preparation of nanocellulose with high-pressure homogenization from pretreated biomass with cooking with active oxygen and solid alkali[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9378-9386. [百度学术]
Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood[J]. Biomacromolecules, 2007, 8(10): 3276-3278. [百度学术]
Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2010, 3(1): 71-85. [百度学术]
Dufresne A. Cellulose nanomaterial reinforced polymer nanocomposites[J]. Current Opinion in Colloid & Interface Science, 2017, 29: 1-8. [百度学术]
Favier V, Cavaille J Y, Canova G R, et al. Mechanical percolation in cellulose whisker nanocomposites[J]. Polymer Engineering & Science, 1997, 37(10): 1732-1739. [百度学术]
Mishnaevsky Jr L, Mikkelsen L P, Gaduan A N, et al. Nanocellulose reinforced polymer composites: computational analysis of structure-mechanical properties relationships[J]. Composite Structures, 2019, 224: 111024-111031. [百度学术]
Lee K Y, Aitomäki Y, Berglund L A, et al. On the use of nanocellulose as reinforcement in polymer matrix composites[J]. Composites Science and Technology, 2014, 105: 15-27. [百度学术]
Sullivan E, Moon R, Kalaitzidou K. Processing and characterization of cellulose nanocrystals /polylactic acid nanocomposite films[J]. Materials, 2015, 8(12): 8106-8116. [百度学术]
Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J].Chemical Society Reviews, 2011, 40(7): 3941-3994. [百度学术]
董金虎. 聚合物基复合材料的增强增韧[J]. 中国塑料, 2012, 26(7): 20-27. [百度学术]
DONG J H. Reinforcement and toughening of polymer matrix composites[J]. China Plastics, 2012, 26(7): 20-27. [百度学术]
Shojaeiarani J, Bajwa D S, Stark N M, et al. Rheological properties of cellulose nanocrystals engineered polylactic acid nanocomposites[J]. Composites Part B: Engineering, 2019, 161: 483-489. [百度学术]
Dufresne A. Nanocellulose: A new ageless bionanomaterial[J]. Materials Today, 2013, 16(6): 220-227. [百度学术]
Dufresne A. Processing of polymer nanocomposites reinforced with cellulose nanocrystals: A challenge[J].International Polymer Processing, 2012, 27(5): 557-564. [百度学术]
Zoppe J O, Peresin M S, Habibi Y, et al.Reinforcing poly (ε-caprolactone)nanofibers with cellulose nanocrystals[J].ACS Applied Materials & Interfaces, 2009, 1(9): 1996-2004. [百度学术]
Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997, 277(5330):1232-1237. [百度学术]
Svagan A J, Hedenqvist M S, Berglund L. Reduced water vapour sorption in cellulose nanocomposites with starch matrix[J]. Composites Science and Technology, 2009, 69(3/4): 500-506. [百度学术]
Svagan A J, Azizi Samir M A S, Berglund L A. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness[J]. Biomacromolecules, 2007, 8(8): 2556-2563. [百度学术]
Li F, Mascheroni E, Piergiovanni L. The potential of nanocellulose in the packaging field: A review[J]. Packaging Technology and Science, 2015, 28(6): 475-508. [百度学术]
Schroers M, Kokil A, Weder C. Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers[J]. Journal of Applied Polymer Science, 2004, 93(6): 2883-2888. [百度学术]
Jonoobi M, Harun J, Mathew A P, et al. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion[J]. Composites Science and Technology, 2010, 70(12): 1742-1747. [百度学术]
Ferreira F V, Pinheiro I F, Gouveia R F, et al. Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites[J]. Polymer Composites, 2018, 39: 9-29. [百度学术]
Shang Z, An X, Seta F T, et al. Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals[J].Carbohydrate Polymers, 2019, 222: 115037-115043. [百度学术]
Ghanbari A, Tabarsa T, Ashori A, et al. Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties[J].Carbohydrate Polymers, 2018, 197: 305-311. [百度学术]
Arjmandi R, Hassan A, Haafiz M K M, et al. Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites[J].International Journal of Biological Macromolecules, 2016, 82: 998-1010. [百度学术]
Herrera N, Mathew A P, Oksman K. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties[J].Composites Science and Technology, 2015, 106: 149-155. [百度学术]
Peng Y, Gardner D J, Han Y. Drying cellulose nanofibrils: In search of a suitable method[J]. Cellulose, 2012, 19(1): 91-102. [百度学术]
Peng Y, Han Y, Gardner D J. Spray-drying cellulose nanofibrils: Effect of drying process parameters on particle morphology and size distribution[J]. Wood and Fiber Science, 2012, 44(4): 448-461. [百度学术]
Herrera N, Salaberria A M, Mathew A P, et al. Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: Effects on mechanical, thermal and optical properties[J].Composites Part A: Applied Science and Manufacturing, 2016, 83: 89-97. [百度学术]
Khalil H P S A, Davoudpour Y, Islam M N, et al. Production and modification of nanofibrillated cellulose using various mechanical processes: A review[J]. Carbohydrate Polymers, 2014, 99: 649-665. [百度学术]
刘 欢, 尹 婵, 魏晓奕, 等. 干燥方式对再生纳米纤维素结构及性能的影响[J]. 化工新型材料, 2015, 43(2): 184-186. [百度学术]
LIU H, YIN C, WEI X Y, et al. The Influence of drying methods on the structure and properties of regenerated nanocellulose[J]. New Chemical Materials, 2015, 43(2): 184-186. [百度学术]
Kian L K, Saba N, Jawaid M, et al. A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites[J]. International Journal of Biological Macromolecules, 2019, 121: 1314-1328. [百度学术]
Sethi J, Illikainen M, Sain M, et al. Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure[J]. European Polymer Journal, 2017, 86: 188-199. [百度学术]
Karkhanis S S, Stark N M, Sabo R C, et al. Water vapor and oxygen barrier properties of extrusion-blown poly (lactic acid)/cellulose nanocrystals nanocomposite films[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 204-211. [百度学术]
Sung S H, Chang Y, Han J. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silver skin[J]. Carbohydrate Polymers, 2017, 169: 495-503. [百度学术]
Abdulkhani A, Hosseinzadeh J, Ashori A, et al. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite[J]. Polymer Testing, 2014, 35(5): 73-79. [百度学术]
Kargarzadeh H, Huang J, Lin N, et al. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites[J]. Progress in Polymer Science, 2018, 87: 197-227. [百度学术]
Luzi F, Fortunati E, Puglia D, et al. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica[J]. Polymer Degradation and Stability, 2015, 121: 105-115. [百度学术]
Wu H, Nagarajan S, Shu J, et al. Green and facile surface modification of cellulose nanocrystal as the route to produce poly (lactic acid) nanocomposites with improved properties[J]. Carbohydrate Polymers, 2018, 197: 204-214. [百度学术]
Purnama P, Kim S H. Bio-based composite of stereocomplex polylactide and cellulose nanowhiskers[J]. Polymer Degradation and Stability, 2014, 109: 430-435. [百度学术]
Petersson L, Kvien I, Oksman K. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials[J]. Composites Science and Technology, 2007, 67(11/12): 2535-2544. [百度学术]
Fortunati E, Luzi F, Puglia D, et al. Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant[J]. Industrial Crops and Products, 2015, 67: 439-447. [百度学术]
Myoung S H, Im S S, Kim S H. Non-isothermal crystallization behavior of PLA/acetylated cellulose nanocrystal/silica nanocomposites[J]. Polymer International, 2016, 65(1): 115-124. [百度学术]
Shojaeiarani J, Bajwa D S, Stark N M. Green esterification: A new approach to improve thermal and mechanical properties of poly (lactic acid) composites reinforced by cellulose nanocrystals[J]. Journal of Applied Polymer Science, 2018, 135(27): 46468-46475. [百度学术]
Shojaeiarani J, Bajwa D S, Hartman K. Esterified cellulose nanocrystals as reinforcement in poly (lactic acid) nanocomposites[J]. Cellulose, 2019, 26(4): 2349-2362. [百度学术]
Lu Y, Cueva M C, Lara-Curzio E, et al. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization[J].Carbohydrate Polymers, 2015, 131: 208-217. [百度学术]
Robles E, Urruzola I, Labidi J, et al. Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites[J]. Industrial Crops and Products, 2015, 71: 44-53. [百度学术]
Song Z, Xiao H, Zhao Y. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper[J]. Carbohydrate Polymers, 2014, 111: 442-448. [百度学术]
Fujisawa S, Saito T, Kimura S, et al. Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites[J]. Composites Science and Technology, 2014, 90: 96-101. [百度学术]
Fujisawa S, Saito T, Kimura S, et al. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials[J]. Biomacromolecules, 2013, 14(5): 1541-1546. [百度学术]
Espino-Pérez E, Bras J, Ducruet V, et al. Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites[J]. European Polymer Journal, 2013, 49(10): 3144-3154. [百度学术]
Ma P, Jiang L, Xu P, et al. Rapid stereocomplexation between enantiomeric comb-shaped cellulose-g-poly (l-lactide) nanohybrids and poly (d-lactide) from the melt[J]. Biomacromolecules, 2015, 16(11): 3723-3729. [百度学术]
Lizundia E, Fortunati E, Dominici F, et al. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties[J]. Carbohydrate Polymers, 2016, 142: 105-113. [百度学术]
Muiruri J K, Liu S, Teo W S, et al. Highly biodegradable and tough polylactic acid-cellulose nanocrystal composite[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3929-3937. [百度学术]
Fortunati E, Armentano I, Zhou Q, et al. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose[J].Polymer Degradation and Stability, 2012, 97(10): 2027-2036. [百度学术]
Arrieta M P, Fortunati E, Dominici F, et al. Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties[J]. Carbohydrate Polymers, 2014, 107: 16-24. [百度学术]
Pei A, Zhou Q, Berglund L A. Functionalized cellulose nanocrystals as biobased nucleation agents in poly (l-lactide)(PLLA)-Crystallization and mechanical property effects[J]. Composites Science and Technology, 2010, 70(5): 815-821. [百度学术]
Yin Y, Zhao L, Jiang X, et al. Poly (lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals[J]. Cellulose, 2017, 24(11): 4773-4784. [百度学术]
Zhou L, He H, Li M, et al. Enhancing mechanical properties of poly (lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls[J]. Industrial Crops and Products, 2018, 112: 449-459. [百度学术]
de Paula E L, Roig F, Mas A, et al. Effect of surface-grafted cellulose nanocrystals on the thermal and mechanical properties of PLLA based nanocomposites[J].European Polymer Journal, 2016, 84: 173-187. [百度学术]
Almasi H, Ghanbarzadeh B, Dehghannya J, et al. Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly (lactic acid): Morphological and physical properties[J]. Food Packaging and Shelf Life, 2015, 5: 21-31. [百度学术]
Soman S, Chacko A S, Prasad V S. Semi-interpenetrating network composites of poly (lactic acid) with cis-9-octadecenylamine modified cellulose-nanofibers from areca catechu husk[J].Composites Science and Technology, 2017, 141: 65-73. [百度学术]
Niu X, Liu Y, Song Y, et al. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging[J].Carbohydrate Polymers, 2018, 183: 102-109. [百度学术]
Frone A N, Berlioz S, Chailan J F, et al. Morphology and thermal properties of PLA-cellulose nanofibers composites[J].Carbohydrate Polymers, 2013, 91(1): 377-384. [百度学术]
Tingaut P, Zimmermann T, Lopez-Suevos F. Synthesis and characterization of bionanocomposites with tunable properties from poly (lactic acid) and acetylated microfibrillated cellulose[J]. Biomacromolecules, 2010, 11(2): 454-464. [百度学术]
Mendes J F, Paschoalin R T, Carmona V B, et al. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion[J]. Carbohydrate Polymers, 2016, 137: 452-458. [百度学术]
Kargarzadeh H, Johar N, Ahmad I. Starch biocomposite film reinforced by multiscale rice husk fiber[J].Composites Science and Technology, 2017, 151: 147-155. [百度学术]
Lu Y, Weng L, Cao X. Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter[J]. Macromolecular Bioscience, 2005, 5(11): 1101-1107. [百度学术]
Ghanbari A, Tabarsa T, Ashori A, et al. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing[J]. International Journal of Biological Macromolecules, 2018, 112: 442-447. [百度学术]
Montero B, Rico M, Rodríguez-Llamazares S, et al. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume[J]. Carbohydrate Polymers, 2017, 157: 1094-1104. [百度学术]
Prakobna K, Galland S, Berglund L A. High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers[J]. Biomacromolecules, 2015, 16(3): 904-912. [百度学术]
Li J, Zhou M, Cheng G, et al. Fabrication and characterization of starch-based nanocomposites reinforced with montmorillonite and cellulose nanofibers[J].Carbohydrate Polymers,2019,210: 429-436. [百度学术]
Hietala M, Mathew A P, Oksman K. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion[J].European Polymer Journal, 2013, 49(4): 950-956. [百度学术]
Habibi Y, Goffin A L, Schiltz N, et al. Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization[J].Journal of Materials Chemistry, 2008, 18(41): 5002-5010. [百度学术]
Lönnberg H, Larsson K, Lindstrom T, et al. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties[J]. ACS Applied Materials & Interfaces, 2011, 3(5): 1426-1433. [百度学术]
Zhou L, He H, Li M C, et al. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property[J].Carbohydrate Polymers, 2018, 189: 331-341. [百度学术]
Lo Re G, Engström J, Wu Q, et al. Improved cellulose nanofibril dispersion in melt-processed polycaprolactone nanocomposites by a latex-mediated interphase and wet feeding as LDPE alternative[J]. ACS Applied Nano Materials, 2018, 1(6): 2669-2677. [百度学术]
Zoppe J O, Peresin M S, Habibi Y, et al. Reinforcing poly (ε-caprolactone) nanofibers with cellulose nanocrystals[J].ACS Applied Materials & Interfaces, 2009, 1(9): 1996-2004. [百度学术]
Hivechi A, Bahrami S H, Siegel R A. Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone[J].Materials Science and Engineering: C, 2019, 94: 929-937. [百度学术]
Bellani C F, Pollet E, Hebraud A, et al. Morphological, thermal, and mechanical properties of poly (ε-caprolactone)/poly (ε-caprolactone)-grafted-cellulose nanocrystals mats produced by electrospinning[J]. Journal of Applied Polymer Science, 2016, 133(21),43445-43452. [百度学术]
Koppolu R, Lahti J, Abitbol T, et al. Continuous processing of nanocellulose and polylactic acid into multilayer barrier coatings[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11920-11927. CPP [百度学术]